Specifying Differential Evolution in ESDL

Steve Dower* Clinton Woodward

Swinburne University of Technology
Melbourne, Australia
November 10, 2010

Abstract

Evolutionary Systems Definition Language (ESDL) is a domain-specific language for search
algorithms based on iterative improvements to a solution population. Differential Evolution (DE) is
an evolutionary algorithm that uses real-valued vectors for individuals and a “weighted differential”
vector variation scheme. This report describes DE using ESDL and validates the performance
against earlier work.

1 Introduction

1.1 ESDL

Evolutionary System Definition Language (ESDL) is a domain-specific language for describing the
flow of evolutionary algorithms (EAs) [1]. It defines a system as groups of individuals and the process
followed to create new groups from existing ones. Groups are created by selecting and modifying
individuals from existing groups or from generators.

ESDL does not specify the implementation or behaviour of specific operations: it requires an
underlying framework to provide the functionality. For this report, esec! is the supporting framework.

1.2 Differential Evolution

Differential Evolution (DE) is an EA introduced by Storn and Price [2-4]. The canonical approach
uses a population of real-valued vectors and follows a basic EA generational flow. Reproduction is
performed using a “weighted differential” vector for mutation followed by uniform crossover, rather
than a traditional crossover and mutation scheme.

In DE, a target vector and a base vector are selected from the current population. The base vector
and a weighted difference vector, created from two additional sample vectors, are added to create a
mutant vector. The target vector and the mutant vector are then combined, using crossover, to create
a trial vector. If the trial vector is better than the target vector the target vector is replaced. Figure 1
shows this process as a flowchart, reproduced from the authors’ original description in [4].

2 System Definition

ESDL can be used to define DE applied to a two-dimensional function as shown in Listing 1. The
only element provided separately from the ESDL definition is mutate_DE, which performs the weighted
difference-vector variation. All other elements are provided by esec; descriptions of their behaviour

*Contact via http://stevedower.id.au/
! Available online at http://code.google.com/p/esec. The plugin and configuration files used in this report are also
available from here.

http://stevedower.id.au/
http://code.google.com/p/esec

TR/CIS/2010/3 2 SYSTEM DEFINITION

1) Choose target vector and base vector
2) Random choice of two population members

Population
/ Xog X1g / Xog / X3,g /.../XN 2,g/XN lg/ Py

(o] 0] o]

parameter vector XN-1,g

(target vector)

objective function value f(xy.,)

3) Compute weighted
difference vector

X0, (=base vector) F

4) Add to base vector

mutant
/ VO,g / Vl,g / VZ,g / V3,g /.../VN—Z,g/VN—l,g/ popslation

ve
| | o] o] [S| [A

\ 4

» Crossover

l U, trial vector

select

trial - P _ -
o target 5) Xo,g11 = U iIf flug g) <= flxo,g), €lse Xg g0 = Xo g

new
/Xo,g+1 /Xl g+1 /Xz g1 /X3,g+1 /’ ¢ '/XN 2g+1/XN 1g+1/ population

Pygr
o) I g I Xy .)l foage foae

Xsigo1)

Figure 1: The DE generate and test loop from [4]

are included below for completeness. The problem landscape is specified externally. Changing the
problem landscape may require modification of the numeric values in line 1.

TR/CIS/2010/3 2 SYSTEM DEFINITION

Listing 1: ESDL definition of the DE algorithm

1 FROM random_real (length=2,lowest=-2.0,highest=2.0) SELECT (size) population
2 YIELD population

4 BEGIN GENERATION

5 # SELECT without a USING makes a copy of the group

6 FROM population SELECT (size) targets

7

8 # Stochastic Universal Sampling for bases

9 FROM population SELECT (size) bases USING fitness_sus(mu=size)
10

11 # Ensure r0 I= r1 != r2, but any may equal

12 JOIN bases, population, population INTO mutators \

13 USING random_tuples (distinct=True)
14

15 FROM mutators SELECT mutants USING mutate_DE(scale=0.8)

16

17 JOIN targets, mutants INTO target_mutant_pairs USING tuples

18 FROM target_mutant_pairs SELECT trials \

19 USING crossover_tuple(per_gene_rate=0.8)
20

21 JOIN targets, trials INTO targets_trial_pairs USING tuples

22 FROM targets_trial_pairs SELECT population USING best_of_tuple
23

24 YIELD population

25 END GENERATION

Behaviour for the mutate_DE operator is specified in Listing 2. It is applied to a tuple containing
three real-valued vectors, created by the JOIN-INTO instruction on lines 12 and 13 of Listing 1.

Listing 2: Pseudocode definition for mutate DE

function mutate_DE (source, scale):
for each vector b, p; and p2 in source:
yield new vector b+ scale X (p1— p2)

Tuples created on lines 12 and 13 of Listing 1 consist of each vector from the first source group
bases and one vector randomly selected from each remaining group. Specifying distinct ensures
that each selected vector is different from those already selected. Lines 17 and 21 create tuples by
matching pairs of individuals from the two groups, which is preferable over merging the groups with
FROM-SELECT. Joining creates a strong association between joined elements while merging does not
ensure that the trial vectors in targets_trial_pairs are matched with their original vector from
targets.

As used on lines 18 and 19 of Listing 1, the crossover_tuple operator creates new individuals
by selecting single genes from each member of the tuple; per_gene_rate specifies the probability of a
gene being selected from an individual other than the first. Filtering with best_of_tuple returns the
individual in the tuple with the highest fitness.

TR/CIS/2010/3 3 VALIDATION

3 Validation

While the ESDL description has well-defined behaviour, an empirical analysis is required to verify that
this behaviour is actually DE.

As a benchmark, we generated results using the MATLAB®) code from [4].? A modification was
made to this code to return the iteration count. Strategy “DE/rand/1/bin” was used, which matches
the system defined in Listing 1 in all but two ways. Stochastic uniform sampling is used in the ESDL
system to select base vectors, which may result in some being used multiple times, and mutation
vectors may be re-used for separate bases. The benchmark code uses a random permutation of the
population to select base vectors and mutation vectors, resulting in each vector being used once as a
base vector and each of the two mutation vectors. According to the analysis in [4], these differences
should result in slightly better performance by the ESDL system.

A two-dimensional Rosenbrock function (detailed in Appendix A) was selected to be used as a
benchmark. Each experiment was run until a fitness of less than 1.0 x 107 was achieved or 1000
generations had been evaluated; the result shown is the mean of the number of generations taken over
100 experiments. esec was used as the underlying framework; Listing 2 was implemented in Python.

Two parameters were varied: scale and the per-gene rate of crossover. The full set of parameters,
benchmark results and new results are shown in Table 1.

Table 1: Comparison of varying parameter sets

Scale (F) Crossover Rate (CR) Benchmark Result New Result

0.2 0.8 789 673
0.8 0.8 78.1 69.0
1.2 0.8 122 116
1.8 0.8 255 249
0.8 0.0 1000 991
0.8 0.2 753 665
0.8 0.5 161 153
0.8 0.8 78.0 68.3
0.8 1.0 55.1 50.4

Figure 2 shows that the ESDL-based implementation produces similar results to the software made
available by DE’s original authors. The slight performance improvement observed in the ESDL imple-
mentation results is most likely a result of allowing base vectors to be used more than once in each
generation.

2 Also available online at http://www.icsi.berkeley.edu/ storn/code.html.

http://www.icsi.berkeley.edu/~storn/code.html

TR,/CIS/2010/3 REFERENCES

1000

800

M Existing result

ESDL validation result
600 -

400

200 -

F=0.2 F=0.38 F=1.2 F=18 CR=0.0 CR=0.2 CR=0.5 CR=0.8 CR=1.0

Figure 2: Average generation count for each parameter set

4 Summary

This report provides a description of the Differential Evolution algorithm using ESDL. The classic
algorithm is shown concisely in ESDL and the weighted difference-vector mutation operator is specified
using pseudocode.

The ESDL description was used with esec to produce a working implementation, which was vali-
dated against a TSP benchmark problem. Results show that the ESDL implementation is consistent
with existing published software.

References

[1] S. Dower and C. Woodward, “Evolutionary System Definition Language,” Swinburne University of
Technology, Tech. Rep. TR/CIS/2010/1, 2010. 1

[2] R. M. Storn and K. V. Price, “Differential Evolution - a simple and efficient adaptive scheme for
global optimization over continuous spaces,” Berkeley, Tech. Rep. TR-95-012, 1995. 1

[3] ——, “Differential Evolution: A simple and efficient adaptive scheme for global optimization over
continuous spaces,” Journal of Global Optimization, vol. 11, 1997. 1

[4] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution. Springer, 2005. 1, 2, 4

[5] H. H. Rosenbrock, “An automatic method for finding the greatest or least value of a function,” The
Computer Journal, vol. 3, 1960. 6

TR/CIS/2010/3 A ROSENBROCK

A Rosenbrock

Rosenbrock’s valley is a well-known classic optimisation problem [5] with many alternative titles, such
as De Jong’s Function 2 (F2), Rosenbrock’s “saddle” and the “Banana” function.

The function is continuous and unimodal, though the non-convex surface gradient can be deceptive
to some search methods. The two-dimensional version is given in (1), with renderings shown in Figure 3
against a linear scale and Figure 4 against a logarithmic scale. (Generalisations to n dimensions exist
but are not given here.)

f(zy) = 100(y—;n2)2-i-(1—:n)2 (1)

Rosenbrock' Valley (View A)

ML \
2000 L hIHHnHt

NARIR
S

NN
1500 - Alnnss
N
N
N
AN

A\

AN

\\\\\\Q\QQ\\\%&\\\QQQ\\\\\\\\ =
NN

iy
l//,,////l///
i,

27 5%

Figure 3: Rendering of the Rosenbrock function on a linear scale

Rosenbrock' Valley (View B)

10000
1000
100
10

0.1
0.01

Figure 4: Rendering of the Rosenbrock function on a logarithmic scale

TR/CIS/2010/3 B ESEC CONFIGURATION

B esec Configuration

Listing 3 shows the configuration used for conducting the experiments in this report. Listing 4 shows
the implementation of mutate_DE based on the pseudocode in Listing 2.

(The code shown has been simplified and comments removed from the full code available online at
http://code.google.com/p/esec/.)

Listing 3: The esec configuration used

from esec.landscape import real

config = {
'landscape': { 'class': real.Rosenbrock },
"system': {
'definition': r'"'

FROM random_real(length=2,lowest=-2.0,highest=2.0) \
SELECT (size) population
YIELD population

BEGIN GENERATION
targets = population

Stochastic Universal Sampling for bases
FROM population SELECT (size) bases USING fitness_sus(mu=size)

Ensure r0 != rl != r2, but any may equal i
JOIN bases, population, population INTO mutators \
USING random_tuples (distinct=True)

FROM mutators SELECT mutants USING mutate_DE(scale=F)
JOIN targets, mutants INTO target_mutant_pairs USING tuples
FROM target_mutant_pairs SELECT trials \

USING crossover_tuple(per_gene_rate=CR)

JOIN targets, trials INTO targets_trial_pairs USING tuples
FROM targets_trial_pairs SELECT population USING best_of_tuple

YIELD population
END GENERATION''',

'size': 15,
'mutate_DE': mutate_DE,
'F': 0.8,
'CR': 0.8,
},
'monitor': {
'report': 'brief_float+local_float',
'summary': 'status+brief_float+best_genome',
'limits': {
'generations': 1000,
'fitness': -1.0e-6,
}
},

http://code.google.com/p/esec/

TR/CIS/2010/3 B ESEC CONFIGURATION

Listing 4: Python implementation of mutate_DE, based on Listing 2

def mutate_DE(source, scale):
for joined_individual in source:
base, parameterl, parameter2 = joined_individuall[:]
yield type(base) (
[b + scale * (pl - p2) for b, pl, p2 in \
zip (base, parameterl, parameter2)],
base)

	Introduction
	ESDL
	Differential Evolution

	System Definition
	Validation
	Summary
	Rosenbrock
	esec Configuration

