Specifying Ant System in ESDL

Steve Dower*

Swinburne University of Technology
Melbourne, Australia
January 10, 2011

Abstract

Evolutionary Systems Definition Language (ESDL) is a domain-specific language for search
algorithms based on iterative improvements to a solution population. Ant System (AS) is a swarm
algorithm that uses a communication scheme based on the pheromone trail mechanism of some ant
species. This report describes AS using ESDL and validates the performance against earlier work.

1 Introduction

1.1 ESDL

Evolutionary System Definition Language (ESDL) is a domain-specific language for describing the flow
of evolutionary algorithms [1]. It defines a system as groups of individuals and the process followed to
create new groups from existing ones. Groups are created by selecting and modifying individuals from
existing groups or from generators.

ESDL does not specify the implementation or behaviour of specific operations: it requires an
underlying framework to provide the functionality. For this report, esec! is the supporting framework.

1.2 Ant System

Ant System (AS) was originally presented as “Ant-cycle”; one of the first three ant-inspired algorithms
[2]. The general algorithm is now known as Ant Colony Optimisation (ACO), with the common feature
of ACO algorithms being the use of environmental stigmergy (pheromone trails, as used by some species
of ants) to constructively generate potential solutions [3]. Excerpt 1 shows the basic ACO algorithm.
Specific algorithms vary in construction or pheromone update schemes.

Excerpt 1: The general Ant Colony Optimization algorithm from |[3]

Set parameters, initialize pheromone trails

while termination condition not met do
Construct AntSolutions
ApplyLocalSearch (optional)
UpdatePheromones

end while

One of the first applications of ACO was the Travelling Salesman Problem (TSP), which is still
commonly used as a benchmark. In the TSP the goal is to find the shortest path that visits each

*Contact via http://stevedower.id.au/
! Available online at http://code.google.com/p/esec. The plugin and configuration files used in this report are also
available from here.

http://stevedower.id.au/
http://code.google.com/p/esec

TR/CIS/2010,/2 2 SYSTEM DEFINITION

member of a set of cities without visiting any city more than once. ACO applied to TSP uses each
simulated ant to select a path at random, biased towards shorter segments and those with higher
levels of simulated pheromone. In AS, the amount of pheromone added to each segment is inversely
proportional to the final length of all tours that used it, encouraging future ants to re-use segments
that have previously contributed to shorter paths. Over a number of iterations, positive reinforcement
results in all ants converging to the same path. With a suitable set of AS parameters, this path will
represent one of the better solutions. Unsuitable AS parameters create an excessively strong pheromone
effect, resulting in convergence to the first path found, or a strong bias towards a nearest-neighbour
solution, making the algorithm overly greedy.

2 System Definition

ESDL can be used to define AS and apply it to a TSP instance, as shown in Listing 1. Several ele-
ments external to the ESDL definition are required: create_pheromone_map (a function to initialise a
pheromone map object), build_tours (a generator for creating candidate solutions) and cost_map (the
matrix of costs between connected nodes). An evaluator to calculate the length of a given tour is also
provided externally. The transient group created at lines 4-6, ants, is used to update pheromone_map
once per iteration. Values for alpha, beta, rho, Q and colony_size are parameterised, allowing
multiple experiments to be conducted with different parameter sets but the same definition.

Listing 1: ESDL definition of the AS algorithm applied to a TSP

1 pheromone_map = create_pheromone_map(initial=(Q))

2

3 BEGIN GENERATION

4 FROM build_tours(cost_map=cost_map, cost_power=(beta), \

5 pheromone_map=pheromone_map, pheromone_power=(alpha)) \

6 SELECT (colony_size) ants

7 YIELD ants

8

9 pheromone_map.update (source=ants, persistence=(1.0-rho), strength=(Q))

10 END GENERATION

The pheromone map is an automatically expanding array with a helper method to update each
value (described in Listing 2). Allowing the pheromone map to expand removes the need to obtain the
size of the landscape within the system definition.

Listing 2: Pseudocode definition for update

function update(source, persistence, strength):
for each element 7 of the pheromone map:
T = T X persistence

for each individual in source:
delta = strength + (length of the individual's tour)

for each link ¢—j in the individual:
Tij = Tij +delta

Behaviour for the build_tours generator is specified in Listing 3. It assumes a fully connected
graph with disconnected nodes simulated by assigning a prohibitively high cost to the edge between
them.

TR/CIS/2010,/2 3 VALIDATION

Listing 3: Pseudocode definition for build_tours

function build_tours(cost_map, cost_power, pheromone_map, pheromone_power):
while individual is requested:

i=0
options = { all nodes except ¢ }
tour = (i)

while options is not empty:
j =node selected with probability from {p;;:j € options}
append j to tour
remove j from options

1=7

yield tour

The definition of p;; is stated as

a . B
_ Tij) nij (1)
o B

EzleopﬂonsTﬁ "My
where 7;; and 7;; are the pheromone level and cost respectively between nodes ¢ and j, options is the set
of unvisited nodes and a and 3 are the scaling powers pheromone_power and cost_power, respectively.

Dij

3 Validation

Results reported by Dorigo et al. [2] covered sixteen parameter variations for AS. For validation of
the ESDL implementation, we reproduced these sixteen experiments. The TSP problem selected was
the Oliver30 graph (fully specified in Appendix A). Each experiment was repeated 10 times for 5000
generations; the results compared are the mean of the shortest path length found. In each case, the
number of ants used was 30, to match the number of cities in Oliver30, and distances were not rounded
to integers. esec was used as the underlying framework; listings 2 and 3 and (1) were implemented in
Python (full code is given in Appendix B).

Three parameters varied were alpha, beta and rho (as specified in Listing 1). The value for Q was
fixed at 100. A full listing of parameters, the original results and the reproduced results are shown in
Table 1.

Since ten runs are not sufficient to determine consistent averages on a largely stochastic process,
some discrepancies are expected.” Figure 1 shows that the ESDL-based implementation produces
similar results to the original publication, but more importantly is sensitive to parameter variations in
a manner consistent with [2].

2While it would have been possible to conduct more experiments, the decision was made that a faithful reproduction
of the experiment was preferable and suitable for the validation work.

TR/CIS/2010,/2 3 VALIDATION

Table 1: Parameter values used and mean shortest path length comparison

alpha (o) beta (§) rho (p) Results from [2] ESDL Results

0 1 0.7 651.27 664.80
0.5 1 0.7 533.49 471.40
1 1 0.7 427.44 443.35
2 1 0.7 456.11 476.77
1 0 0.7 848.31 837.65
1 0.5 0.7 452.62 446.01
1 1 0.7 427.44 443.55
1 2 0.7 424.63 441.84
1 5 0.7 424.25 437.03
1 10 0.7 428.35 433.27
1 20 0.7 438.88 434.87
1 1 0.3 427.85 440.98
1 1 0.5 426.86 442.05
1 1 0.7 427.44 440.61
1 1 0.9 428.28 439.98

900

800
Existing result
M ESDL validation result

700

600 -

500 -

400

300

o
-
n

a=0.0
a=0.5

o o
- N
I I
=] =]

<

~
I

@

B=20
p=0.3
p=0.5
p=0.7
p=0.9

o o — n
n n n n
(<=8 =% <=8 (<=8

Figure 1: Average shortest path for each parameter set

TR/CIS/2010,/2 REFERENCES

4 Summary

This report provides a description of the Ant System algorithm using ESDL. The classic algorithm is
shown concisely in ESDL with specific elements shown as pseudocode or equations as appropriate.

The ESDL description was used with esec to produce a working implementation, which was vali-
dated against a TSP benchmark problem. Results show that the ESDL implementation is consistent
with existing published results.

References

[1] S. Dower and C. Woodward, “Evolutionary System Definition Language,” Swinburne University of
Technology, Tech. Rep. TR/CIS/2010/1, 2010. 1

[2] M. Dorigo, V. Maniezzo, and A. Colorni, “Positive feedback as a search strategy,” Polytechnic
University of Milano, Tech. Rep., 1991. 1, 3, 4

[3] M. Dorigo, M. Birattari, and T. Stiitzle, “Ant Colony Optimization,” IRIDIA, Tech. Rep.
TR/IRIDIA /2006-023, 2006. 1

[4] 1. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of permutation crossover operators on
the travelling salesman problem,” in Proceedings of the Second International Conference on Genetic
Algorithms on Genetic algorithms and their application, 1987, pp. 224-230. 6

TR,/CIS/2010/2

A OLIVER30 TSP

A Oliver30 TSP

The Oliver30 TSP is shown in Table 2 as a list of coordinates. Figure 2 shows a coordinate map of

city locations. The values were obtained from [4].

Table 2: City locations for the Oliver30 TSP

Coordinates
54 67
54 62
37 84
41 94

2 99

7 64
25 62
22 60
18 54

4 50
13 40
18 40
24 42
25 38
44 35
41 26
45 21
58 35
62 32
82 7
91 38
83 46
71 44
64 60
68 58
83 69
87 76
74 78
71 71
58 69

TR,/CIS/2010/2 A OLIVER30 TSP

100

90

80

60

*
*

50

*

40

*
*

30

20 L2

10

0 10 20 30 40 50 60 70 80 90 100

Figure 2: City locations for the Oliver30 TSP

TR/CIS/2010/2 B PYTHON IMPLEMENTATION

B Python Implementation

Listing 4 shows the configuration used for conducting the experiments in this report. Listing 5 shows
the implementation of build_tours using the TourIndividual shown in Listing 6, which is based on
esec’s IntegerIndividual. Listing 7 implements a PheremoneMap class, including the update method
from Listing 2. The implementation of (1) is shown in Listing 8.

(The code shown has been simplified and comments removed from the full code available online at
http://code.google.com/p/esec/.)

Listing 4: The esec configuration used

from plugins.ACO import *
city_graph = tsp.Landscape(cost_map="cfgs/0liver30.csv")

config = {
"system': {
'alpha': 1.0,
'beta': 1.0,

'rho': 0.7,
'Q': 100,
'colony_size': 30,
'cost_map': city_graph.cost_map,
'city_graph': city_graph,
'definition': r'"'
pheromone_map = create_pheromone_map (initial=(Q))

BEGIN GENERATION
FROM build_tours(cost_map=cost_map, cost_power=(beta), \
pheromone_map=pheromone_map, pheromone_power=(alpha)) \
SELECT (colony_size) ants

EVAL ants USING city_graph
YIELD ants

pheromone_map.update (source=ants, persistence=(l-rho), strength=(Q))
END GENERATION

[N
>

'create_pheromone_map': pheromone.PheromoneMap,
1,
'monitor': {
'report': 'brief+local_header+local_int+local_unique',
'summary': 'status+brief+best_phenome',
'limits': {
'generations': 5000,
T,
'primary': 'ants',
},

http://code.google.com/p/esec/

TR/CIS/2010/2 B PYTHON IMPLEMENTATION

Listing 5: Python implementation of build_tours, based on Listing 3

def build_tours(cost_map, cost_power=2.0, \
pheromone_map=None, pheromone_power=2.0):
irand = rand.randrange
frand rand.random

length = max(cost_map) [0] + 1

while True:
current_city = 0

Remaining options

options = set(xrange(length))
options.discard(current_city)
genes = [current_city 1]

while options:
prob_list = init_fitness_wheel (current_city, optiomns, \
cost_map, cost_power, \
pheromone_map, pheromone_power)
total = sum(i[1] for i in prob_list)
selection = frand() * total

next_city = prob_list[0][0]

i=20

while selection > 0.0:
selection -= prob_list[i] [1]
i +=1

i-=1

if 0 < i < len(prob_list):
next_city = prob_list[i][0]
else:
Greedy selection as a fallback
next_city = prob_list[0][0]

current_city = next_city
genes.append (current_city)

options.discard(current_city)

yield TourIndividual (genes, parent=self)

Listing 6: Python implementation of TourIndividual, required by Listing 5.

class TourIndividual (IntegerIndividual):

@property
def phenome (self):
p=1[1
current = self.genome[0]

for g in self.genome[1l:]:

p.append ((current, g))

current = g
p-append((current, self.genome[0]))
return p

@property
def phenome_string(self):
return ' -> '.join(str(i) for i in self.genome)

TR/CIS/2010/2 B PYTHON IMPLEMENTATION

Listing 7: Python implementation of a pheromone map

class PheromoneMap (object):
def __init__(self, initial=0.0):
self.initial = initial
self._pheromone = { }

def __getitem__(self, key):
return self._pheromone.get(key, self.initial)

def update(self, source, strength, persistence):
pheromone = self._pheromone

for key in pheromone.keys():
pheromone [key] *= persistence

decay the initial value as well
self.initial *= persistence

for indiv in source:
delta = strength / float(indiv.fitness.values[0])

for p in indiv.phenome:
pheromone [p] = self[p] + delta

Listing 8: Python implementation of init_fitness_wheel based on (1)

def init_fitness_wheel(current_city, options, \
cost_map, cost_power, \
pheromone_map, pheromone_power):
[(i, cost_map[(current_city, i)]) for i in optiomns]
[(i, pheromone_map[(current_city, i)]) for i in options]

cost_list
pher_1list

prob_list [Ci, \
(c *x -cost_power if c else 1) * \
(p ** pheromone_power if p else 1)) \
for (i, ¢), (i2, p) in zip(cost_list, pher_list) if i == 1i2]

return sorted(prob_list, key=lambda i: i[1], reverse=True)

10

	Introduction
	ESDL
	Ant System

	System Definition
	Validation
	Summary
	Oliver30 TSP
	Python Implementation

