
ESDL Implicit Parameters Proposal

Steve Dower*

December 15, 2010

Abstract

Evolutionary Systems Definition Language (ESDL) is a domain-specific language for search
algorithms based on iterative improvements to a solution population. Operations and selection
strategies are specified outside of ESDL and accessed through function calls with named parameters.
This proposal amends ESDL to simplify specification of certain parameters in order to produce less
verbose system definitions.

1 Introduction

Evolutionary System Definition Language (ESDL) is a domain-specific language for describing the flow
of evolutionary or population-based algorithms [1]. It defines a system as groups of individuals and the
process used to create new groups from existing ones. Groups are created by selecting and modifying
individuals from existing groups or from generators. Filtering and modification operators are referred
to as filters, and are provided by an underlying software implementation. Other functions may be
specified to provide more complex arithmetic or logical operations than those available in pure ESDL.

In ESDL as previously defined in [1], function and filter parameters may be specified by providing
the name of the parameter followed by an equals sign and the value (as shown in Listing 1). The
use of the parameter name, unlike other programming languages, is a strict requirement to improve
readability in isolation from supporting documentation.

Listing 1: An example of a function and a filter with named parameters in ESDL

value = adjust(value=value , rate=1.4)
FROM parents SELECT offspring USING crossover(per_pair_rate=0.2, one_child=true)

As can be seen from Listing 1, some redundancies occur when specifying variables. The parameter
value is passed the variable value, resulting in the word appearing twice unnecessarily. The parameter
one_child is optional, and if omitted (or passed false), the behaviour is equivalent to passing true
to the two_children parameter; in effect, one_child is only ever specified with the value true.

For simple systems, such as those with few variation operations, it is expected that variables will
be named identically to the parameters they represent. In this situation, providing both the parameter
name and the variable name (which are the same) does not improve readability. In addition, providing
one of a set of mutually exclusive mode-selection parameters (such as whether a recombination operator
produces one or two children) can be assumed to represent selection of that option; specifying the value
true does not clarify further.

This proposal describes an amendment to ESDL to improve and simplify parameter value specifi-
cation. When a value for a parameter is omitted, the value of a variable with an identical name is used.
If no such variable exists, the value true is assumed. Section 2 specifies the proposed amendment in
the context of changes to ESDL as described in [1]. Section 4 discusses three alternatives, including

*Contact via http://stevedower.id.au/

1

http://stevedower.id.au/


TR/CIS/2010/7 2 IMPLICIT PARAMETERS

both supporting arguments and the rationale for their non-selection. Appendix A includes a suggested
set of modifications to implement the described functionality in esdlc.1

2 Implicit Parameters

2.1 Intent

The primary intent of this extension is to reduce the amount of unnecessary text in system definitions
and to promote a pattern for specifying behaviour selection parameters.

This amendment does not support positional parameters. Specifying a value or variable without a
parameter name will result in an error (unless the name happens to match a valid parameter). The
rationale for omitting positional parameters is given in Section 4.2.

2.2 Parameter Names

Parameter names are not affected by this amendment. In every case where a parameter is provided,
the name must be provided.

2.3 Parameterised Values

Where a parameter name is followed by a comma or a right-parenthesis, the value is provided implicitly.
Where a parameter name is followed by an equals sign and a variable or expression, the value is provided
explicitly. A parameter name followed by an equals sign but not then followed by a value, variable or
expression is a syntax error.

An implicitly provided parameter attempts to use the value of a variable with the same name.
Names in ESDL are case-insensitive [1] and hence there is no requirement for casing to be identical. If
such a variable exists anywhere within the system definition, the value of the variable is passed as the
value of the parameter. If the variable exists but has not been initialised, it is an uninitialised variable
error. If no such variable exists anywhere in the system definition, the value true2 is passed as the
value of the parameter.

If neither a parameter name nor value are provided, the default value of the parameter is used (this
is the behaviour as of [1]). The value of a matching variable is only used if the parameter name is
specified.

2.4 Behaviour Selection

The behaviour selection pattern is not enforced by ESDL, however, for readability and consistency
between implementations it is strongly encouraged for function and filter developers.

Many selection and variation operations have some parts of their behaviour parameterised. For
example, most two-parent crossover operations have the option of producing either one or two children
and some operations that use value limits may use hard limiting, soft limiting, reflection, wrapping or
another mode of restriction. In these cases, the mode is a parameter of the operation, rather than a
distinct operator.

A function or filter using the behaviour selection pattern provides one Boolean parameter for
each possible mode. Each of these mode parameters is optional and defaults to false. When all mode
parameters are false, a default mode is used. When one mode parameter is true, the mode associated
with that parameter is used. If more than one mode parameter is true, either a priority order is used
to select from those specified or an error is produced. The only condition where a mode specified as
false may be used is when it is the default and all mode parameters have been specified as false;
otherwise, a mode may only be used if it is one of the mode parameters specified as true.

1The reference compiler for ESDL; available online at http://code.google.com/p/esec/ as part of the esec frame-
work.

2Or the equivalent used by the underlying implementation.

2

http://code.google.com/p/esec/


TR/CIS/2010/7 3 EXAMPLES

2.5 Rationale

A common use of variables in ESDL systems is to specify parameters externally. For example, esec’s
batch functionality allows multiple experiments to be conducted with different parameters using a
single system definition. These variables can be clearly specified using the same name as that of the
parameter they represent, as shown in Listing 2. Since the names match, with the proposed amendment
the usage of these variables could be as shown in Listing 3.

Listing 2: Example of specifying parameters using variables in ESDL (old syntax)

per_gene_rate = 0.2
sigma = 0.85
FROM parents SELECT offspring USING mutate_gaussian(per_gene_rate=per_gene_rate , sigma=sigma)

Listing 3: Example of specifying parameters using variables in ESDL (new syntax)

per_gene_rate = 0.2
sigma = 0.85
FROM parents SELECT offspring USING mutate_gaussian(per_gene_rate , sigma)

The behaviour selection pattern described in Section 2.4 provides a consistent manner in which to
adjust the behaviour of an operator. With parameters using the value true if no value is provided,
specifying the mode name is sufficient, as shown in Listing 4.

Listing 4: Example of specifying an operator mode in ESDL (new syntax)

FROM population SELECT 10 parents USING uniform_random(no_replacement)

If a variable exists with the same name as the mode, which would result in the value of the variable
being passed instead of true, the previous style of syntax may be used to override, as shown in
Listing 5.

Listing 5: Example of specifying an operator mode in ESDL with variable name conflict

FROM parents SELECT 1 one_child USING uniform_random
FROM parents SELECT offspring USING crossover(one_child=true)

In both cases, the previous behaviour remains, ensuring backwards compatibility and the ability
to override the new behaviour when required. There is the potential for users new to ESDL to confuse
implicit parameter syntax with positional parameter syntax as used by other programming languages,
however, this is easily clarified and is not likely to be a serious impediment to adoption of ESDL.

3 Examples

The examples presented in this section have been selected as demonstrations of the simplified parameter
syntax and its suitability for presenting algorithms. These examples are not intended to represent
improved or even necessarily useful algorithms.

3.1 External Parameters

This example provides a highly generalised evolutionary algorithm in Listing 6. The parameters size,
length, k, points, per_pair_rate and per_gene_rate are provided externally in Listing 7 as a
configuration dictionary suitable for use with the esec framework. Without implicit parameters, every
parameter in Listing 6 (except size) would need to be specified as “per_pair_rate=per_pair_rate,”
greatly increasing the amount of text and not improving the readability of the system.

3



TR/CIS/2010/7 3 EXAMPLES

Listing 6: System definition with externally provided parameters in ESDL

FROM random_binary(length) SELECT (size) population
YIELD population

BEGIN generation
FROM population SELECT (size) parents USING tournament(k)
FROM parents SELECT offspring USING crossover(points , per_pair_rate), \

mutate_bitflip(per_gene_rate)
FROM offspring SELECT population

YIELD population
END

Listing 7: esec configuration dictionary for Listing 6 (in Python)

config = {
'system ': {

'definition ': DEFINITION , # see Listing 6
'size': 100,
# random binary
'length ': 30,
# tournament
'k': 2,
# crossover
'points ': 1,
'per_pair_rate ': 0.8,
# mutation
'per_gene_rate ': 1.0 / 30.0

}
}

3.2 Particle Swarm Optimisation Mode Selection

Listing 8 provides a definition for a Particle Swarm Optimisation algorithm based on the one used
in [2]. The update_position variation operator used on line 13 has a number of methods of limiting
the resultant positions. A complete implementation of update_position is given in Listing 9 (a
summarised implementation was provided in [2]). No limit on particle position (unbounded) is the
default; clamp (hard limit and reset velocity), wrap (move to the opposite end of the valid range) and
bounce (reflected position and negated velocity) are the alternative options and are prioritised in that
order.

Since update_position correctly implements the behaviour selection pattern (as described in Sec-
tion 2.4) the behaviour may be specified by simply including the name as a parameter with no value.

4



TR/CIS/2010/7 3 EXAMPLES

Listing 8: ESDL definition of Particle Swarm Optimisation (based on [2])

1 FROM random_pso(length=10, lowest=-100 , highest=100) \
2 SELECT (size) population
3

4 FROM population SELECT 1 global_best USING best
5 FROM population SELECT (size) p_bests
6 YIELD population
7

8 BEGIN GENERATION
9 JOIN population , p_bests INTO pairs USING tuples

10

11 FROM pairs SELECT population USING \
12 update_velocity(global_best , w=1.0, c1=2.0, c2=2.0), \
13 update_position(unbounded)
14

15 JOIN population , p_bests INTO pairs USING tuples
16 FROM pairs SELECT p_bests USING best_of_tuple
17

18 FROM population , global_best SELECT 1 global_best USING best
19

20 YIELD global_best , population
21 END GENERATION

Listing 9: Python implementation of update_position

def update_position(_source , unbounded=False , clamp=False , wrap=False , bounce=False):
# unbounded is the default mode
if not clamp and not wrap and not bounce:

unbounded = True

for indiv in _source:
new_position = list(indiv)
new_velocity = list(indiv.velocities)
lower = indiv.lower_position_bounds
upper = indiv.upper_position_bounds

for i, (pos , vel , low , high) in \
enumerate(zip(new_position , new_velocity , lower , upper)):

new_pos = pos + vel
new_vel = vel

if unbounded:
pass

elif clamp:
if new_pos < low:

new_pos = low
new_vel = 0

if new_pos > high:
new_pos = high
new_vel = 0

elif wrap:
if new_pos < low:

new_pos = high ? (low ? new_pos)
if new_pos > high:

new_pos = low ? (high ? new_pos)
elif bounce:

if new_pos < low:
new_pos = low + (low ? new_pos)
new_vel = -new_vel

if new_pos > high:
new_pos = high + (high ? new_pos)
new_vel = -new_vel

new_position[i] = new_pos
new_velocity[i] = new_vel

yield PSOIndividual(new_position + new_velocity , indiv)

5



TR/CIS/2010/7 4 ALTERNATE DESIGNS

3.3 Parameterised Mode Selection

Combining implicit parameters with the behaviour selection pattern allows behaviours to be neatly, if
obscurely, overridden. This example demonstrates a potentially useful side effect of implicit parameters,
rather than recommended practice for presenting an algorithm.

Line 7 of the algorithm in Listing 10 specifies uniform crossover apparently producing both one
child and two children. However, the esec-style configuration dictionary specified in Listing 11 creates
variables named one_child and two_children. Since the variables are now defined, their values are
used instead of true, allowing the mode used by the crossover operation to be selected externally to
the system definition.

Listing 10: System definition for a Genetic Algorithm in ESDL

1 FROM random_binary(length) SELECT (size) population
2 YIELD population
3

4 BEGIN GENERATION
5 FROM population SELECT (size) offspring USING \
6 fitness_proportional ,
7 uniform_crossover(one_child , two_children),
8 mutate_bitflip(per_gene_rate)
9

10 FROM offspring SELECT population
11

12 YIELD population
13 END GENERATION

Listing 11: esec configuration dictionary for Listing 10 (in Python)

config = {
'system ': {

'definition ': DEFINITION , # see Listing 10
'size': 100,
# random binary
'length ': 30,
# crossover
'one_child ': True ,
'two_children ': False ,
# mutation
'per_gene_rate ': 1.0 / 30.0

}

4 Alternate Designs

The three designs presented in this section were considered as alternatives to the proposed amendment.
Each is presented as a summary of modifications to ESDL, along with the perceived implications.

4.1 No Modification

No functionality added by the proposed amendment is currently unavailable, so a valid option is to
retain the current specification. The current behaviour is that parameters always require both a name
and a value, separated by an equals sign. Specifying either a name or a value, but not both, is always
an error.

The increased amount of text required for named parameters may result in ESDL authors selecting
shortened or abbreviated variables, for example, as shown in Listing 12. Abbreviations of this type
usually reduce readability. Encouraging the use of full variable names improves the clarity of parameter
specifications.

6



TR/CIS/2010/7 5 SUMMARY

Listing 12: Examples of abbreviated variable names in ESDL

l = 20
pgr = 0.1
FROM random_binary(length=l) SELECT 10 parents
FROM parents SELECT offspring USING mutate_random(per_gene_rate=pgr)

Secondly, there is not yet any accepted pattern for behaviour specification. While it is possible to
implement the pattern described in Section 2.4, there is no reason to select it over an alternative, such
as those shown in Listing 13. By treating implicit parameters as true when otherwise undefined, the
pattern described earlier has expressive and implementation benefits over the alternatives.

Listing 13: Alternative methods of specifying operator behaviour in ESDL

FROM particles SELECT particles USING update_position(mode=1)
FROM particles SELECT particles USING update_position(mode='clamp ')
FROM particles SELECT particles USING update_position_wrap
FROM particles SELECT particles USING update_position , wrap_positions

4.2 Positional Parameters

For this alternative, values specified in parameter lists are assumed to be values passed to the param-
eter occupying the associated position. This behaviour matches that used in or supported by most
programming languages.

The primary issue with positional parameters is the difficulty in identifying the purpose of each
value. For example, Listing 14 does not clearly specify whether 𝜎 = 0.1 or 0.5; clarification must
be sought in the documentation or source code of mutate_gaussian. When parameter names are
required, as in listings 2 and 3, there is no ambiguity as to which parameter receives each value.

Listing 14: Positional parameters using an alternative ESDL syntax

FROM parents SELECT offspring USING mutate_gaussian(0.1, 0.5)

In other programming languages, the use of positional parameters is supported by development
environments that provide parameter names as the developer is typing. Since ESDL is intended for
print publication, this feature is not available. The use of positional parameters is largely historical
and most modern languages provide and encourage the use of named parameters.

4.3 Partial Implementation

The proposed amendment contains two parts, either of which can be implemented independently of
the other. For example, an error could be produced when implicitly specifying a variable that does
not exist, rather than assuming the value true. This may reduce unexpected behaviour as the result
of typographical errors, though such an error is likely to be detected since the name is required to
match a valid parameter for the function or filter. Implementation of implicit parameters is simpler
without requiring the compiler to detect whether or not a variable exists, however, a production quality
compiler should detect this situation and be capable of substituting the value without difficulty.

Alternatively, all parameters specified without a value could assume the intended value is true.
Implementation of this alternative is trivial, however it does nothing to encourage good naming habits
and discourage abbreviations such as those shown in Listing 12.

5 Summary

This proposal describes an amendment to ESDL allowing implicit parameters in function and filter
specifications within a system definition. Parameter names provided without values use the value of a
variable with a matching name or, if no such variable exists, true.

7



TR/CIS/2010/7 REFERENCES

The proposed amendment specified in Section 2 identifies the behavioural changes to parameter
specifications, including error conditions. A number of example uses are presented in Section 3. Three
alternatives to the amendment proposed are discussed and arguments against are made in Section 4.
None are considered likely to improve the readability of ESDL system definitions when compared to
the proposal.

The behaviour specification pattern allows developers of external functions and operators to provide
consistent interfaces that are easy to use when coupled with implicit parameters. The proposal made
achieves this without restricting authors from using whatever form of description they believe is most
appropriate.

References

[1] S. Dower and C. Woodward, “Evolutionary System Definition Language,” Swinburne University of
Technology, Tech. Rep. TR/CIS/2010/1, 2010. 1, 2

[2] ——, “Specifying Particle Swarm Optimisation with ESDL,” Swinburne University of Technology,
Tech. Rep. TR/CIS/2010/5, 2010. 4, 5

8



TR/CIS/2010/7 A ESDLC MODIFICATIONS

A esdlc Modifications

Listing 15 provides a complete patch to revision ecd8e91fc6c0 of esdlc, which is also available as the
tip of the implicit_parameters branch (revision fb09d2539645) in the repository at http://code.
google.com/p/esec.

The nodes.py file is modified to add a new property to variable nodes to indicate whether it is
a potentially unresolved implicit parameter. esec.py is modified to emit dynamic code to use the
variable if available or to substitute True if it is not. Since esec provides some variable values after
compilation, it is not possible to determine at compile-time which parameters should be replaced by
True.

Listing 15: Modifications to esdlc implementing implicit parameters

d i f f −r ecd8e91fc6c0 −r fb09d2539645 esec/esd lc /esec.py
--- a/esec/esdlc/esec.py Fri Dec 10 09:21:01 2010 +1100
+++ b/esec/esdlc/esec.py Mon Dec 13 12:02:28 2010 +1100
@@ -155,7 +155 ,10 @@

def write_variable(self , node):
'''Emits text for variable nodes.'''

- yield self.safe_variable(node.name)
+ if node.implicit:
+ yield 'globals ().get("%s", True)' % self.safe_variable(node.name)
+ else:
+ yield self.safe_variable(node.name)

def write_unknown(self , node):
'''Emits text for unknown nodes.'''

d i f f −r ecd8e91fc6c0 −r fb09d2539645 esec/esd lc /nodes.py
--- a/esec/esdlc/nodes.py Fri Dec 10 09:21:01 2010 +1100
+++ b/esec/esdlc/nodes.py Mon Dec 13 12:02:28 2010 +1100
@@ -447,11 +447 ,14 @@

if not token: raise error.ExpectedParameterValueError(tokens[-1])
if token.tag == 'eos ': raise error.ExpectedParameterValueError(token)

- if token.tag != '=': raise error.ExpectedParameterValueError(token)

- token_i += 1
- token_i, arg_node = UnknownNode.parse(tokens , token_i)
- func_args[arg_name] = arg_node
+ if token.tag == '=':
+ token_i += 1
+ token_i, arg_node = UnknownNode.parse(tokens , token_i)
+ func_args[arg_name] = arg_node
+ else:
+ func_args[arg_name] = VariableNode(arg_name , [tokens[token_i-1]])
+ func_args[arg_name].implicit = True

token = _get_token(tokens , token_i)
if token and token.tag == ',': token_i += 1

@@ -495,7 +498,7 @@

token_i += 1
return token_i, FunctionNode(func_name , tokens[first_token:token_i], *func_args)

-
+
class NameNode(NodeBase):

'''Represents a node with a name.'''
tag = 'name '

@@ -566,6 +569 ,10 @@
tag = 'variable '
def __init__(self , name , tokens):

super(VariableNode , self).__init__(name , tokens)
+ self.implicit = False
+ '''If ``True ``, replace with `ValueNode ` rather than raising a
+ warning if the variable does not exist.
+ '''

@classmethod
def parse(cls , tokens , first_token):

9

http://code.google.com/p/esec
http://code.google.com/p/esec

	Introduction
	Implicit Parameters
	Intent
	Parameter Names
	Parameterised Values
	Behaviour Selection
	Rationale

	Examples
	External Parameters
	Particle Swarm Optimisation Mode Selection
	Parameterised Mode Selection

	Alternate Designs
	No Modification
	Positional Parameters
	Partial Implementation

	Summary
	esdlc Modifications

