
ESDL: A Simple Description Language for Population-Based
Evolutionary Computation

Steve Dower∗ Clinton J. Woodward

April 7, 2011

Abstract

A large proportion of publications in the field of evo-
lutionary computation describe algorithm specialisation
and experimentation. Algorithms are variously de-
scribed using text, tables, flowcharts, functions or pseu-
docode. However, ambiguity that can limit the efficiency
of communication is common. Evolutionary System Def-
inition Language (ESDL) is a conceptual model and lan-
guage for describing evolutionary systems efficiently and
with reduced ambiguity, including systems with multi-
ple populations and adaptive parameters. ESDL may
also be machine-interpreted, allowing algorithms to be
tested without requiring a hand-coded implementation,
as may already be done using the esec framework. The
style is distinct from existing notations used within the
field and is easily recognisable. This paper describes
the case for ESDL, provides an overview of ESDL and
examples of its use.

1 Introduction

Evolutionary algorithms (EA) form a significant propor-
tion of the myriad of approaches to computational in-
telligence [1, 7, 17]. The defining feature of an EA is
a solution population that, over time, improves as the
result of competitive forces. Most EAs derive from the
neo-Darwinian paradigm of biological evolution, notably
in the use of concepts and terminology of genotypes,
phenotypes and fitness-affected survival. Each step in
the evolution of a population is the result of applying
a selection and reproduction algorithm to the preceding
population.

The generality of the biologically inspired EA model
has resulted in a vast number of publications present-
ing improved or optimised algorithms. These algo-
rithms are variously described using text and tables
(as in [8, 15, 27]), flowcharts (as in [15, 19, 31]), pseu-
docode (as in [31]) and functions (as in [6]). However,
these descriptions often contain ambiguous components

∗Contact via http://stevedower.id.au/

that prevent independent reproduction of experiments
without a significant number of correct assumptions.
Eiben [14], Peer [29], Ventura [35], Rummler [32] and
many others have identified the need for algorithms to
be completely shareable and verifiable. Jon Claerbout
coined the term “reproducible research” to refer to this
need [18] and early 20th century philosophers Cohen and
Nagel stated, “scientific method ... is concerned with ver-
ification” [4]. However, much of the published literature
in EC consists of new empirical evidence but little ver-
ification of earlier results. While “reproducibility” has
been gaining use as a review criterion for conferences,
under review conditions and constraints it can be diffi-
cult to evaluate.

An oft-suggested solution is for researchers to stan-
dardise on a single implementation of a software library
or framework, typically the one being promoted by the
author. (For examples, see [2,22–24]) Standardising im-
plementations is generally uncommon, due to difficulties
with portability, versioning, licensing and the general in-
clination of computer scientists to write their own soft-
ware. Typically, common interchange formats and com-
munication protocols are designed instead. For exam-
ple, while there is no “standard” internet browser, there
are standards that describe how a conforming browser
should communicate, interpret and present information.

Some systems (for example, that shown in Excerpt 1)
cannot be easily implemented in existing frameworks
such as EO,1 ECJ2 or CILib.3 While these frameworks
provide flexible object models that generally support
complex systems, significant effort is required to trans-
late an algorithm description into executable code. A
likely cause of this high cost is the lack of a common
structure for describing the parameters and processes
underlying the evolutionary system, coupled with the
subjectivity of aesthetic presentation. While it is reason-

1An evolutionary computation framework for C++, online at http:
//eodev.sourceforge.net/

2A research evolutionary computation system for Java, online at http:
//cs.gmu.edu/~eclab/projects/ecj/

3A component based framework for developing Computational Intel-
ligence software in Java, online at http://www.cilib.net/

1

http://stevedower.id.au/
http://eodev.sourceforge.net/
http://eodev.sourceforge.net/
http://cs.gmu.edu/~eclab/projects/ecj/
http://cs.gmu.edu/~eclab/projects/ecj/
http://www.cilib.net/


Author Draft 1 INTRODUCTION

able to assume that authors select a presentation pleas-
ing to them, it is unlikely that the choice is ideal for the
full range of readers.

De Jong provided unambiguous yet verbose pseu-
docode as an introduction to evolutionary systems [6].
In their own introductory text, Eiben and Smith sum-
marised their textual descriptions of breeding processes
into tables specifying the operation to use at each stage
of a predefined sequence (see Table 1, from [15]). Some
authors including Koza [19] and O’Neill [27] have con-
structed tables of parameters – “tableaux” – as descrip-
tions of various problems and applicable breeding pa-
rameters. While sufficient for clearly defining the prob-
lem space, these tables do not describe the structure of
the breeding algorithm; both authors use text and an
occasional flowchart for this purpose. Price et al. de-
scribe the processes behind Differential Evolution (DE)
using text, flowcharts, diagrams, pseudocode and vari-
ous mathematical notations [31]. Implementers of DE
must reconcile no less than five separate definitions into
a working algorithm.

Each of these examples describes particular algo-
rithms in styles that have a learning curve; to under-
stand the algorithm, the reader must first understand
the description. Any misunderstanding in either the
form of expression or the algorithm itself may result in
an incorrect interpretation that, however unfairly, re-
flects poorly on the original description.

An attempt to reproduce an existing algorithm was
made by Painter, who implemented Grammatical Evo-
lution (GE) using Python based on the original pub-
lished specification and source code [28]. However, his
results showed a much higher rate of premature conver-
gence than that found by the original authors, O’Neill
and Ryan [26]. Painter attributed his lack of success to
incomplete access to the original authors’ source code,
particularly that it “omitted the genetic algorithm por-
tion” and “did not compile on its own,” and cited two
other similarly failing attempts to implement GE.

Rather than standardising on a specific piece of soft-
ware, the approach suggested in this work is to specify
a domain-specific language suitable for describing the
breeding procedure of an evolutionary system unam-
biguously and without enforcing a particular software
framework. Such a description language should support
parameterised selection, recombination and mutation
operators, dynamic problem spaces, adaptive parame-
ters and distributed populations to be at least capable
of expressing current algorithms without limiting future
developments. A common form of description would al-
low researchers to communicate their intent clearly when

describing algorithms and diminish or remove the learn-
ing curve.

Previous domain-specific modelling languages for EC
include Evolutionary Algorithm Modeling Language
(EAML) [34] and Programmable Parameter Control
for Evolutionary Algorithms (PPCEA) [20], neither of
which has achieved wide use. EAML represents the
breeding process of evolutionary systems using XML
for communication and interoperation between distinct
frameworks [25]. PPCEA is a scripting language that
provides parameter control of an algorithm, without em-
phasising the structure of the algorithm itself. Both
EAML and PPCEA emphasise implementation and are
designed for explaining an algorithm to a machine,
rather than other researchers.

VHDL4 is an example of a mature and successful
domain-specific language from the digital electronics
field [3]. While originally intended as a description lan-
guage for communication and interoperability, the cre-
ation of compilers and synthesisers has transformed it
into a development language. However, VHDL also illus-
trates the need for practitioners to have strong domain
knowledge; for all its precision, VHDL can be close to
impenetrable for those without any experience in digi-
tal electronics. Following this lead, once a description
language for the EC domain is developed, a reasonable
next step is to create software that can interpret the de-
scription language and perform the algorithm directly,
removing the manual translation step and changing the
“description” language into a “definition” language.

The benefits of an automatic translation from a de-
scription language to an executable program are most
significant during design, where rapid modification and
evaluation are important, and later, to simplify re-use of
an algorithm and independent confirmation of results.
(These two stages have already been implemented for
the language described in this paper as the esec frame-
work5 and the esecui prototyping tool.6) However, the
most interested readers are human, and hence the lan-
guage must be designed for human readership and not
to simplify machine interpretation.

This paper presents and describes Evolutionary Sys-
tem Definition Language (ESDL). The structure of the
paper is as follows: In Section 2, the conceptual model
and syntax of ESDL is described. Section 3 contains a
set of example system definitions to illustrate the suit-

4VHDL: VHSIC hardware description language; VHSIC: very high
speed integrated circuit

5An evolutionary computation framework for Python, online at http:
//esec.googlecode.com/

6An algorithm prototyping tool based on esec, online at http://
esecui.googlecode.com/

2

http://esec.googlecode.com/
http://esec.googlecode.com/
http://esecui.googlecode.com/
http://esecui.googlecode.com/


Author Draft 2 EVOLUTIONARY SYSTEM DEFINITION LANGUAGE

population
(group)

parents
(group)

fitness proportional (selector)

population
(group)

crossover (variation)

mutate (variation)

Figure 1: A graphical example of the ESDL conceptual model

ability and flexibility of ESDL. Section 4 discusses the
design rationale and potential future directions of ESDL.

2 Evolutionary System Defini-
tion Language

ESDL is a domain-specific modelling language for de-
scribing the flow of an EA. It does this by defining
the initialisation, combination and breeding aspects of
an evolutionary system. It does not attempt to define
specifics of any particular operator, representation or
problem; ESDL depends on an underlying EC frame-
work to provide problem landscapes and operator im-
plementations. Algorithms written in ESDL may be
transferred between various frameworks, given consis-
tent operators. The specification of some form of “stan-
dard library” is essential in the long term, but is beyond
the scope of this paper.

The central conceptual entities of ESDL are individu-
als, groups and operators. Each individual represents a
single solution or part of a solution to a problem being
addressed and a group represents a collection of indi-
viduals. Operators include filters and selectors, which
are used to create subsets of groups, and variation op-
erators, which create modified individuals. The flow of
individuals through a set of operators is what defines
the behaviour of a system.

A group is defined as a list (strictly, an ordered mul-
tiset) of some or all of the individuals that have been
created at any point during the algorithm’s execution,
where the size of a group is the number of individuals in
the list including repetitions (that is, the group’s cardi-

nality). Multiple groups may contain the same individ-
ual simultaneously and each group may contain repeti-
tions of individuals, and all groups may only contain a
finite number of individuals. Groups are named and may
be redefined by replacing their contents. An individual’s
groups do not define the identity of that individual; an
individual cannot say that it “belongs” exclusively to
a particular generation’s population because the same
individual may also have “belonged” to an earlier gen-
eration (for example, through elitism) as well as being
included in one or more transient groups (for example,
after crossover but before mutation).

ESDL is based on plain text, allowing it to be easily
presented in publications, typed and modified by hand.
The syntax is deliberately distinctive to prevent confu-
sion with existing styles of pseudocode, mathematical
notations and equations. Some concepts are similar to
those used in functional programming, although ESDL
cannot be considered a functional language due to the
lack of referential transparency inherent in the stochas-
tic processes used.7

The primary statement connecting groups and oper-
ators is the FROM–SELECT statement. Individuals are
taken from groups and filtered, combined or otherwise
modified to form a new group.

Listing 1: Example of FROM–SELECT in ESDL

FROM population SELECT 100 offspring \
USING tournament(k=2), random_mutate

The statement shown in Listing 1 creates a group
called offspring containing one hundred individuals
derived from the population group. Individuals are
selected using a binary tournament process and used to
derive slightly modified (mutated) copies. Note that it is
an underlying implementation that provides the actual
behaviour of tournament and random_mutate; ESDL
only “glues” pieces of an algorithm together and provides
a consistent interface for specifying parameters, such as
the probability of mutating a gene, or, as in Listing 1,
the tournament size 𝑘.

New individuals are created using generators that
act like groups with an infinite number of individuals.
Properties such as genome length and value bounds are
passed to the generator and associated with each indi-
vidual so that they do not need to be explicitly repeated
for other operators. Listing 2 uses a random_binary
generator to create a group of 50 individuals, each of
length six.

7In theory, by pre-defining the sequence of random numbers gener-
ated and specifying the breeding process recursively an entire system
could be described functionally. However, since this does not improve
utility we do not consider it further.

3



Author Draft 2 EVOLUTIONARY SYSTEM DEFINITION LANGUAGE

Listing 2: Example of population creation using a generator
in ESDL

FROM random_binary(length=6) SELECT 50 population

Specifying multiple source or destination groups al-
lows for merging and partitioning. Line 1 of List-
ing 3 splits pop into three groups: ten individuals into
parentsA, five into parentsB and the remainder into
offspring. Line 2 merges the three groups into a single
group named everyone.

Listing 3: Example of group partitioning and merging in
ESDL

1 FROM pop SELECT 10 parentsA , 5 parentsB , offspring
2 FROM parentsA , parentsB , offspring SELECT everyone

Selecting specific individuals, such as tournament se-
lection, is performed with a selection operator (selec-
tor). Selection operators that use replacement produce
unbounded groups and require all destination groups
to have a size specified, as parentsA and parentsB do
(but offspring does not) in Listing 3. If not enough in-
dividuals are available to fill a group to its specified size,
the result will be smaller than requested. This is useful
for algorithms such as CHC, which allows the number
of offspring to vary each iteration [16].

Fitness evaluations are performed by evaluators,
which are decoupled from individuals and their repre-
sentations. The underlying implementation determines
whether the fitness evaluation occurs immediately or
lazily;8 ESDL only requires that the fitness is available
when needed, for example, when a fitness proportional
selector is used. In many cases, definitions may omit de-
tails of the evaluator, allowing application to a range of
problems without modification. However, systems that
use parameterised evaluators, multi-step evaluations or
perform credit-assignment require explicit specification
using the EVALUATE (or EVAL) command.

The solutions represented by individuals do not
change; a given individual always receives the same fit-
ness when evaluated with a given evaluator. By impli-
cation, operators that “modify” individuals (such as mu-
tation or crossover) must create new individuals rather
than changing the originals (sometimes called copy-on-
write semantics). This avoids the need for the explicit
cloning of individuals required by systems that perform
modifications in place. Also by implication, dynamic
problems (where the fitness of an individual changes
with time or some external parameter) cannot be repre-
sented as a single evaluator. To solve this limitation, an

8“Lazy” evaluation stores the calculation but does not perform it until
the result is needed. If the result is never needed, the calculation
never occurs and no computation time is wasted.

evaluator’s identity includes its parameters. For exam-
ple, a dynamic Travelling Salesman Problem evaluator
at time 𝑡1 is not the same as at time 𝑡2; hence, the fitness
of a given individual is not required to remain constant.

The EVALUATE command specifies the evaluator to use
for all individuals in the given group or groups. Listing 4
shows an example of using an evaluator parameterised
on time.

Listing 4: Example of a dynamic evaluator in ESDL

t = t + 1
EVAL population USING landscape(time=t)

Our current work has shown that many population-
based evolutionary systems can be fully described using
only FROM–SELECT statements (as shown in listings 9, 10
and 12). Complex mutation schemes and coevolution-
ary systems can require functionality other than that
provided by FROM–SELECT. For example, DE uses three
different individuals from the same group to perform
a single mutation operation [31]. This collation of indi-
viduals may be expressed in ESDL using the JOIN state-
ment, as shown in Listing 5.

Listing 5: Example of DE-style collation in ESDL

JOIN popA , popA , popA INTO parents \
USING unique_random_tuples

FROM parents SELECT offspring USING mutate_DE

The parents group in Listing 5 will contain a set of
joined individuals. Joined individuals are functionally
identical to regular individuals: their “species”9 speci-
fies that they consist of other individuals, similar to a
numeric vector that consists of scalar values.

Listing 6: A two-step evaluator example using joined indi-
viduals

JOIN popA , popB INTO joined USING each_with_best
EVALUATE joined USING rastrigin
EVALUATE popA USING assign(source=joined)

Coevolutionary systems (both cooperative and com-
petitive) [1] and specific credit-assignment schemes can
be realised using JOIN-INTO with specially designed
evaluators. Joined individuals can be evaluated in the
same manner as regular individuals, however, fitness is
not automatically propagated to the individuals com-
prising the joined individual. Listing 6 demonstrates
Potter and De Jong’s CCGA-1 model [30] of joining
each individual of one group with the best individual
of a second group, then transferring part or all of the
fitness value from joined to the original individuals in
popA. (The complete example is shown in [11].)

9There are various definitions of species within the EC field, and while
important to the underlying implementation and species-specific op-
erators, ESDL does not require a strict definition.

4



Author Draft 2 EVOLUTIONARY SYSTEM DEFINITION LANGUAGE

Listing 7: Examples of assignment in ESDL

size = 100
FROM random_int SELECT (size) population
FROM population SELECT (size/10) parents

FROM parents SELECT offspring USING mutate(per_gene_rate=mutate_rate)

mutate_rate = adapt_rate(original=mutate_rate , based_on=offspring)

Listing 8: A complete steady-state EA system in ESDL

1 FROM random_real SELECT 500 population
2 YIELD population
3

4 BEGIN generation_equivalent
5 REPEAT 500
6 FROM population SELECT 2 parents USING binary_tournament
7 FROM parents SELECT offspring USING crossover(per_pair_rate=0.9), \
8 mutate(per_gene_rate=0.01)
9

10 FROM offspring SELECT 1 replacer USING best
11 FROM population SELECT 1 replacee , rest USING uniform_shuffle
12

13 YIELD offspring , replacee
14

15 FROM replacer , rest SELECT population
16 END REPEAT
17

18 YIELD population
19 END

The first EVALUATE statement assumes a rastrigin
evaluator that uses a joined individual rather than a
single individual with two values. The second EVALUATE
statement specifies an assign evaluator with each in-
dividual in the joined group to allocate the fitness to
the original individual in popA. ESDL is agnostic to the
type or structure of fitness values and credit assignment
evaluators are necessarily algorithm or problem specific.

To support flexible parameterisation and adaptive
systems, ESDL allows variables to be used in place
of groups, sizes and parameter values. Variables are
created automatically by assignment and support ba-
sic arithmetic (addition, subtraction, multiplication and
division) and calls to external functions. Conditional
control-flow structures are not supported and should be
written as external functions.

A complete algorithm expressed using ESDL is called
a system definition. It consists of an initialisation sec-
tion where all groups and variables are created; per-
iteration breeding is specified separately. The first two
lines of Listing 8 make up the initialisation block. To
specify a non-default evaluator for the initial popula-
tion, an EVALUATE statement would be inserted between
lines 1 and 2.

Blocks represent an iteration of the algorithm. A
block is enclosed by BEGIN and END statements, with
the name of the block specified following BEGIN (for ex-
ample, line 4 of Listing 8). The code within a block exe-
cutes once per iteration and represents the main breed-

ing processes of an algorithm. Multiple blocks (with
distinct names) may be specified and executed in an
arbitrary order, for example, as a hybrid algorithm [9].
The REPEAT statement (line 5) simplifies models that ap-
ply variations multiple times per iteration (such as gap
or steady-state algorithms) [5, 33].

When using an ESDL system definition for execut-
ing an algorithm, not all groups created are relevant in
terms of statistics or termination conditions. The YIELD
command identifies those that are relevant by pass-
ing entire groups to an external monitoring system.10

The group that contains the final solution (in Listing 8,
population) should always be yielded, but some other
groups may also be relevant. For example, statistics col-
lected from the offspring and replacee groups may
show improvements resulting from each breeding oper-
ation; many algorithms perform parameter adjustment
based on this type of information. Termination condi-
tions are not intrinsic to an algorithm, and so are not
specified in the system definition.

Listing 8 contains a number of YIELD statements, re-
turning the initial population (line 2), the updated pop-
ulation each generation-equivalent (line 18) and the off-
spring and replacee groups each time they are updated
(line 13).

10YIELD behaves like the yield statement in the C# and Python pro-
gramming languages. The specified groups are returned without
interrupting the code sequence, similar to the way that a print
statement displays a value and continues and unlike a return state-
ment, which exits a function.

5



Author Draft 3 EXAMPLES

Listing 9: The EA in Table 1 expressed using ESDL

FROM random_binary(length=n) SELECT 500 population
YIELD population

BEGIN generation
FROM population SELECT 500 parents USING binary_tournament
FROM parents SELECT offspring USING crossover_one(per_pair_rate=0.7)
FROM offspring SELECT offspring USING mutate_bitflip(per_gene_rate =(1.0/n))
FROM offspring SELECT population

YIELD population
END

Listing 10: The G3 system in Excerpt 1 expressed using ESDL

FROM random_real SELECT 100 population
YIELD population

BEGIN generation
FROM population SELECT (mu) parents USING uniform_random
FROM parents SELECT (lambda) offspring USING crossover

FROM population SELECT 2 parents , remainder USING uniform_shuffle
FROM offspring SELECT 1 replacementA USING best
FROM parents , offspring SELECT 1 replacementB USING fitness_proportional

FROM remainder , replacementA , replacementB SELECT population
YIELD population

END

3 Examples

Each example presented in this section consists of a pre-
viously published description of an algorithm with a de-
scription of the same algorithm using ESDL. These ex-
amples highlight the comparative simplicity or compre-
hensibility of ESDL and represent canonical or regularly
cited models.

While comments may be included in ESDL defini-
tions, these examples avoid their use in order to better
demonstrate the readability of ESDL without support-
ing text. Each of these examples may be used directly
with the esec framework, or translated by hand into the
configuration format used by other frameworks. Further
examples are given in [11].

3.1 Binary-valued Evolutionary Algo-
rithm

Eiben and Smith [15] describe a number of EA configu-
rations using tables of parameters such as Table 1. The
equivalent system as an ESDL definition is given in List-
ing 9. The variable 𝑛, common to both descriptions,
requires a value before the algorithm can be used. How-
ever, the variable 𝑝𝑚 is calculated from the value of 𝑛
in Listing 9. Note that the termination condition is not
specified in Listing 9, since it is a configuration property
rather than a facet of the algorithm.

Table 1: Description of the EA for the Knapsack Problem as
presented in [15]

Representation Binary strings of length 𝑛
Recombination One point crossover
Recombination probability 70%
Mutation Each value inverted with inde-

pendent probability 𝑝𝑚

Mutation probability 𝑝𝑚 1/𝑛
Parent selection Best out of random 2
Survival selection Generational
Population size 500
Number of offspring 500
Initialisation Random
Termination condition No improvement in last 25 gen-

erations

3.2 Generalized Generation Gap (G3)
Model

Excerpt 1: The G3 system described in [8]

1. From the population 𝑃 , select 𝜇 parents randomly.
2. Generate 𝜆 offspring from 𝜇 parents using a

recombination scheme.
3. Choose two parents at random from the

population 𝑃 .
4. Of these two parents, one is replaced with the best

of 𝜆 offspring and the other is replaced with a
solution chosen by a roulette-wheel selection
procedure from a combined population of 𝜆
offspring and two chosen parents.

Deb et al. [8] describe a system for real parameter
optimisation, shown in Excerpt 1. Listing 10 shows the
equivalent system expressed using ESDL.

6



Author Draft 4 DISCUSSION

Listing 11: Koza’s GP system [19] partially expressed using ECJ’s
parameter file format

pop.subpop .0. size = 1000
pop.subpop .0. species = ec.gp.GPSpecies
pop.subpop .0. species.ind = ec.gp.GPIndividual
pop.subpop .0. species.ind.numtrees = 1
pop.subpop .0. species.ind.tree.0 = ec.gp.GPTree
pop.subpop .0. species.ind.tree .0.tc = tc0
pop.subpop .0. species.numpipes = 2
pop.subpop .0. species.pipe.0 = ec.gp.koza.CrossoverPipeline
pop.subpop .0. species.pipe .0. prob = 0.9
pop.subpop .0. species.pipe.1 = ec.gp.koza.ReproductionPipeline
pop.subpop .0. species.pipe .1. prob = 0.1

Listing 12: Koza’s GP system [19] expressed using ESDL

FROM real_tgp(terminal_prob=0.1, deepest=6, terminals=1) SELECT 1000 population
YIELD population

BEGIN generation
FROM population SELECT 100 reproduced , 900 parents USING tournament(k=7)
FROM parents SELECT offspring USING crossover_one(deepest_result=17)

FROM reproduced , offspring SELECT population
YIELD population

END

3.3 Genetic Programming using ECJ

The parameter files used with the ECJ software pack-
age to describe evolutionary systems are based on a
linear notation.11 The system described by Koza [19]
is partially shown using ECJ’s notation in Listing 1112

and as an ESDL definition in Listing 12. (Some pa-
rameters included in Listing 12 have been omitted from
Listing 11.)

The ESDL system definition takes eight lines to rep-
resent the same algorithm that requires 70 in ECJ’s
notation. A complete configuration for esec, includ-
ing program node specifications and a fitness evaluation
function, requires less than fifty lines of code, while the
complete ECJ parameter file is over 150 lines.

4 Discussion

To make the transition from pure description to an ex-
ecutable definition language, ESDL requires an execu-
tion engine and a collection of domain operators. An
execution engine runs the ESDL system and may be
an interpreter, a compiler or some hybrid of the two.
ESDL could also be transformed into configuration for-
mats used by other frameworks, such as ECJ’s parame-
ter lists (shown in Listing 11), provided the underlying
system is capable of supporting the algorithm. We envis-
age a future where a flexible interpreted system is used

11Based on Java’s property list format, which uses a key=value nota-
tion.

12The complete description is available at http://cs.gmu.edu/
~eclab/projects/ecj/docs/parameters.html

to design an algorithm in ESDL, which is then trans-
ferred, without modification, to a compiler for executing
the algorithm on a supercomputer, a parameter-tuning
framework or directly into a business application.

A collection of basic selection, joining and variation
operators is required, as is the ability to specify custom
operators. There is no standard set of operators for
ESDL as yet, and while defining a standard library of
common operators would be a significant undertaking
that is ultimately beneficial to the entire EC field, it is
beyond the scope of this paper.

The lack of conditional statements, such as if and
while, is deliberate, since limiting the number of paths
through a system significantly reduces the complexity
[21]. Systems described using ESDL are effectively fixed
data-flow models that define how individuals move be-
tween various groups over time. This omission does not
limit the ability of ESDL to describe adaptive systems,
as complex operations can and should be specified sepa-
rately in a more appropriate style or language. The use
of multiple blocks as described in [9] allows systems to
dynamically change the algorithm’s behaviour beyond
that permitted by numeric parameter adjustment.

The esec framework13 uses ESDL as its configuration
format. ESDL is transformed into Python code and exe-
cuted using the Python interpreter, along with any cus-
tom operators or external functions provided. A range of
classic EAs are included with the framework, and esec
has been used to implement algorithms such as Ant Sys-
tem [10], Differential Evolution [12] and Particle Swarm

13Online at http://esec.googlecode.com/

7

http://cs.gmu.edu/~eclab/projects/ecj/docs/parameters.html
http://cs.gmu.edu/~eclab/projects/ecj/docs/parameters.html
http://esec.googlecode.com/


Author Draft REFERENCES

Optimisation [13], producing results comparable to ex-
isting work. The esecui project14 provides a graphical
integrated development environment for designing and
testing ESDL-based algorithms.

5 Summary

This work has shown that a common language for de-
scribing algorithms in evolutionary computation could
be beneficial to reproducibility. The present state of al-
gorithm descriptions limits independent verification and
potentially prevents valuable algorithms gaining wider
use. A standardised description language allows algo-
rithms and structures to be defined clearly, and with
sufficient detail, that other researchers are able to con-
fidently implement and make use of them.

We have presented Evolutionary System Definition
Language (ESDL), which describes systems in a form ab-
stracted from the behaviour and implementation of do-
main operators. With examples we have demonstrated
that ESDL is capable of representing a range of evo-
lutionary algorithms unambiguously. ESDL emphasises
groups over individuals or representations and is concise
for simple systems while being sufficient for complex,
multiple population systems.

ESDL is suitable for automatic transformation into
executable code or parameters for existing frameworks,
while most other forms of description require manual
interpretation. By removing or simplifying this trans-
lation process, algorithms expressed in ESDL are easier
to use correctly and are more likely to be used by the
wider evolutionary computation community.

Work is already progressing on a clear and robust
specification of the language and conceptual model,
which will simplify the task of adding ESDL support
to other frameworks besides esec. The creation of a
standard library of operators has also been highlighted
as essential to sharing algorithms amongst researchers.
Finally, an evaluation of the readability and adequacy
of ESDL is planned, with the results to be used to direct
improvements and changes to the language.

References
[1] E. Alba and J. M. Troya, “A survey of parallel dis-

tributed genetic algorithms,” Complexity, vol. 4, pp.
31–52, 1999. 1, 4

[2] J. Alcalá-Fernández, L. Sánchez, S. García, M. J.
del Jesus, S. Ventura, J. M. Garrell, J. Otero,
C. Romero, J. Bacardit, V. M. Rivas, J. C. Fer-
nández, and F. Herrera, “KEEL: a software tool

14Online at http://esecui.googlecode.com/

to assess evolutionary algorithms for data mining
problems,” Soft Computing, vol. 13, pp. 307–318,
February 2009. 1

[3] P. J. Ashenden, The Designer’s Guide to VHDL.
Morgan Kaufmann Publishers, 1995. 2

[4] M. R. Cohen and E. Nagel, Introduction to Logic
and Scientific Method. Routledge & Kegan Paul
Ltd, 1934. 1

[5] K. A. De Jong, “An analysis of the behavior of a
class of genetic adaptive systems,” Ph.D. disserta-
tion, University of Michigan, 1975. 5

[6] ——, Evolutionary Computation: A Unified Ap-
proach. MIT Press, 2006. 1, 2

[7] ——, “Evolutionary computation,” 2009. 1

[8] K. Deb, A. Anand, and D. Joshi, “A computa-
tionally efficient evolutionary algorithm for real-
parameter optimization,” Evolutionary Computa-
tion, vol. 10, pp. 371–395, December 2002. 1, 6

[9] S. Dower, “ESDL Multiblock Extension Proposal,”
Swinburne University of Technology, Tech. Rep.
TR/CIS/2010/6, 2010. 5, 7

[10] ——, “Specifying Ant System with ESDL,” Swin-
burne University of Technology, Tech. Rep.
TR/CIS/2010/2, 2010. 7

[11] S. Dower and C. Woodward, “Evolutionary Sys-
tem Definition Language,” Swinburne University of
Technology, Tech. Rep. TR/CIS/2010/1, 2010. 4, 6

[12] ——, “Specifying Differential Evolution with
ESDL,” Swinburne University of Technology, Tech.
Rep. TR/CIS/2010/3, 2010. 7

[13] ——, “Specifying Particle Swarm Optimisation
with ESDL,” Swinburne University of Technology,
Tech. Rep. TR/CIS/2010/5, 2010. 8

[14] A. E. Eiben and M. Jelasity, “A critical note
on experimental research methodology in EC,” in
Proceedings of the 2002 Congress on Evolutionary
Computation. IEEE Press, 2002, pp. 582–587. 1

[15] A. E. Eiben and J. E. Smith, Introduction to Evo-
lutionary Computing. Springer, 2003. 1, 2, 6

[16] L. Eshelman, “The CHC adaptive search algo-
rithm,” in Foundations of Genetic Algorithms 1,
G. Rawlins, Ed. Morgan Kaufmann Publishers,
1990, pp. 265–283. 4

[17] D. B. Fogel, Evolutionary Computation: Toward a
New Philosophy of Machine Intelligence. IEEE
Press, 2007. 1

[18] S. Fomel and J. F. Claerbout, “Guest editors’ in-
troduction: Reproducible research,” Computing in
Science and Engineering, vol. 11, pp. 5–7, 2009. 1

8

http://esecui.googlecode.com/


Author Draft REFERENCES

[19] J. R. Koza, Genetic Programming: On The Pro-
gramming of Computer Programs by Natural Selec-
tion. MIT Press, 1992. 1, 2, 7

[20] S.-H. Liu, M. Mernik, and B. R. Bryant, “Param-
eter control in evolutionary algorithms by domain-
specific scripting language PPCEA,” in Proceedings
of the 1st International Conference on Bioinspired
Optimization Methods and their Applications, 2004,
pp. 41–50. 2

[21] T. J. McCabe, “A complexity measure,” IEEE
Transactions on Software Engineering, vol. 2, pp.
308–320, December 1976. 7

[22] J. J. Merelo, P. A. Castillo, and E. Alba, “Algo-
rithm::Evolutionary, a flexible Perl module for evo-
lutionary computation,” Soft Computing, vol. 14,
pp. 1091–1109, 2010. 1

[23] J. J. Merelo and A. Prieto, “GAGS, a flexible
object-oriented library for evolutionary computa-
tion,” in Proceedings of the First International
Workshop on Machine Learning, Forecasting and
Optimization, 1996, pp. 99–105. 1

[24] J.-B. Mouret and S. Doncieux, “Sferesv2: Evolvin’
in the multi-core world,” in Proceedings of the 10th
International Congress on Evolutionary Computa-
tion. IEEE Computer Society, 2010. 1

[25] M. Nowostawski, “eaml-design mailing list,” Febru-
ary 2002, http://sourceforge.net/mailarchive/
forum.php?thread_name=3C72DA51.3030709%
40marni.otago.ac.nz&forum_name=eaml-design.
2

[26] M. O’Neill and C. Ryan, “Grammatical Evolution:
A steady state approach,” in Late Breaking Pa-
pers at the Genetic Programming 1998 Conference.
Omni Press, 1998. 2

[27] ——, Grammatical Evolution. Kluwer Academic
Publishers, 2003. 1, 2

[28] T. Painter, “Grammatical Evolution in Python,”
2006. 2

[29] E. S. Peer, A. P. Engelbrecht, and F. van den
Bergh, “Building sustainable collaborative research
software.” 1

[30] M. A. Potter and K. A. De Jong, “A cooperative co-
evolutionary approach to function optimization,” in
Proceedings of the The Third Conference on Paral-
lel Problem Solving from Nature, 1994, pp. 249–257.
4

[31] K. V. Price, R. M. Storn, and J. A. Lampinen, Dif-
ferential Evolution. Springer, 2005. 1, 2, 4

[32] A. Rummler and T. Strufe, “Evolvica - a framework
for evolutionary computation,” 2004. 1

[33] G. Syswerda, “A study of reproduction in gen-
erational and steady-state genetic algorithms,” in
Foundations of Genetic Algorithms. Morgan Kauf-
mann Publishers, 1991, pp. 94–101. 5

[34] C. B. Veenhuis, K. Franke, and M. Köppen, “A se-
mantic model for evolutionary computation,” in 6th
International Conference on Soft Computing, 2000.
2

[35] S. Ventura, C. Romero, A. Zafra, J. Delgado, and
C. Hervás, “JCLEC: a Java framework for evo-
lutionary computation,” Soft Computing - A Fu-
sion of Foundations, Methodologies and Applica-
tions, vol. 12, pp. 381–392, February 2008. 1

9

http://sourceforge.net/mailarchive/forum.php?thread_name=3C72DA51.3030709%40marni.otago.ac.nz&forum_name=eaml-design
http://sourceforge.net/mailarchive/forum.php?thread_name=3C72DA51.3030709%40marni.otago.ac.nz&forum_name=eaml-design
http://sourceforge.net/mailarchive/forum.php?thread_name=3C72DA51.3030709%40marni.otago.ac.nz&forum_name=eaml-design

	Introduction
	Evolutionary System Definition Language
	Examples
	Binary-valued Evolutionary Algorithm
	Generalized Generation Gap (G3) Model
	Genetic Programming using ECJ

	Discussion
	Summary

