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1 Overview

Notably missing from most GPU processing interfaces are parallel sort algorithms. While a

standard feature of CPU-based libraries and languages, the typical high throughput applications

that GPUs are used for preclude a general implementation. Given the extent to which sort

algorithms can be tuned for particular data structures, shifting the implementation burden onto

developers is understandable. However, without even a basic implementation, many developers

will find it easier to simply copy their data to the CPU, use the C++ standard library’s sort

algorithm and copy it back. For small data sets, this can be more efficient than sorting on the

GPU, but for large arrays the transfer overhead becomes more significant.

This appendix describes the implementation of the bitonic sort algorithm for C++ AMP

that is used for an implementation of ESDL (see [3]). Section 2 describes the general bitonic

sort algorithm. Section 3 details the use of this implementation. Section 4 covers details of

how the algorithm is implemented. The entire source code for this implementation is included

in Section 4.

2 Bitonic Sort

Bitonic sorting networks are based on a fixed sequence of comparisons between every element

in a dataset. A brief outline is given here; [1] and [2] are recommended for full descriptions and

analysis of the algorithm.

The diagram in Figure 1 shows the sequence of comparison-exchange operations for a dataset

with 16 values. Each arrow represents where the larger value appears after an exchange. Note

that the number of elements in the dataset must be a power of two. Figure 2 simplifies the

network by rearranging the exchanges to point in the same direction—in this case, towards the

bottom of the figure.

Each lightly shaded block represents a sort pass: for a dataset of N elements, log2N passes

are required. Within pass i, there are i phases. The first phase consists of 2−iN equally sized

blocks that compare each value with one mirrored around the middle of the block. Each subse-

quent phase consists of twice as many blocks as the previous, but compares each value with one
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Figure 1: A bitonic sorting network for 16 values
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Figure 2: A simplified bitonic sorting network for 16 values
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offset into the lower half rather than mirrored. This arrangement results in 1
2
log2N (log2N + 1)

comparisons for all cases. [1]

3 Usage

The implementation given here is contained in a single header file, bitonic_sort.h. It makes

use of templates, in particular partial specialisation, to generate code optimised for the data

type being sorted. Two functions are provided, parallel_sort and parallel_sort_keys, and

a key_index_type structure. Signatures for these are shown in Listing 1.1 For the simplest

cases of sorting arrays of float, int or unsigned int, parallel_sort can be used as shown in

Listing 2.

template<typename SourceType>
std::shared_ptr<concurrency::array<SourceType, 1>>
parallel_sort(const concurrency::array<SourceType, 1> &source,

bool reverse=false);

template<typename SourceType>
std::shared_ptr<concurrency::array<typename key_index_type<SourceType>::type, 1>>
parallel_sort_keys(const concurrency::array<SourceType, 1> &source);

template<typename T>
struct key_index_type { typedef T type; };

Listing 1: Implied signatures of the methods provided by bitonic_sort.h

#include <amp.h>
#include <memory>
#include <bitonic_sort.h>

concurrency::array<float, 1> unsorted;
std::shared_ptr<concurrency::array<float, 1>> sorted, reverse_sorted;

// initialise unsorted with random values

sorted = bitonic_sort::parallel_sort(unsorted);
reverse_sorted = bitonic_sort::parallel_sort(unsorted, true);

Listing 2: Example of calling parallel_sort with a float array

1The signatures shown are intended to imply usage. The actual implementations have more complex over-
loads for optimisation purposes.
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To sort types other than these, such as arrays or user-defined types, comparable structures

are used that include an index into the original array. Specialising key_index_type allows the

structure and comparison operator to be overridden for a particular source type. Listing 3 shows

an example of sorting a user-defined type by one of its members. The UDTKeyIndex structure

contains a sort key, the y member of UDT, an integer index and a comparison function. Any

structure may be provided to properly sort any data type, with the caveat that all members

must be able to run in restrict(amp) blocks and the warning that instances of this structure

are copied often—size matters. Once a key_index_type has been defined for the user-defined

type, arrays of that type may be sorted as for simple types.

The parallel_sort_keys method is used internally, but is also exposed for users who want

sorted pointers into the original array but do not need the array itself reordered. Listing 4

shows an example of retrieving sorted indexes into the original array, followed by producing an

array of differences between adjacent elements.

Source arrays do not need to be powers of two long and the result arrays are always the

same length as the source. Arrays that are powers of two long are likely to have slightly better

performance per element, but not significantly enough to justify manually padding.
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#include <amp.h>
#include <memory>
#include <bitonic_sort.h>

struct UDT {
float x;
unsigned int y;
int z;

};

struct UDTKeyIndex {
unsigned int k;
int i;
UDTKeyIndex() restrict(cpu, amp) { }
UDTKeyIndex(UDT key, int index) restrict(cpu, amp)

: k(key.y), i(index) { }
bool operator<(const UDTKeyIndex& other) restrict(cpu, amp) {

return k < other.k;
}

};

template<> struct bitonic_sort::key_index_type<UDT> {
typedef UDTKeyIndex type;

};

concurrency::array<UDT, 1> unsorted;
std::shared_ptr<concurrency::array<UDT, 1>> sorted;

// initialise unsorted with random values

sorted = bitonic_sort::parallel_sort(unsorted);

Listing 3: Example of sorting an array of a user-defined type
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std::shared_ptr<concurrency::array<UDTKeyIndex, 1>> sortKeys;
sortKeys = bitonic_sort::parallel_sort_keys(unsorted);

auto& sortKeyRef = *sortKeys;
concurrency::array<float, 1> result(sortKeyRef.extent.size());
concurrency::parallel_for_each(result.extent,

[&](concurrency::index<1> i) restrict(amp) {
int index = sortKeyRef[i].i;
if (index + 1 >= unsorted.extent.size()) {

result[i] = 0.0f;
} else {

result[i] = unsorted[index + 1].x – unsorted[index].x;
}

}
);

Listing 4: Example of using parallel_sort_keys with the user-defined type from Listing 3

4 Implementation

Most of the implementation is in the bitonic_sort::details::parallel_sort_phase function.

Of the public facing functions, parallel_sort obtains the sorted keys from parallel_sort_-

keys and copies the source array into order, while parallel_sort_keys simply creates an array

of sort keys and invokes parallel_sort_inplace. This method is internal and simply calls

parallel_sort_phase the correct number of times. Listing 5 shows the section of parallel_-

sort_inplace responsible for calling parallel_sort_phase.

In Listing 5, keys is the list of key-index pairs (an instance of concurrency::array<key_-

index_type<SourceType>::type, 1>), virtual_size is the length of keys rounded up to the

next power of two and phase_count is the base-2 log of virtual_size. For example, if the

source set has 15 values, keys also has 15 values, virtual_size is 16 and phase_count is 4.

The parallel_sort_phase function is templated over a Boolean (as well as the key type) that

indicates the first call of each pass. Listing 6 shows the complete implementation of parallel_-

sort_phase.
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int starting_block_size = 2;
while (--phase_count >= 0) {

int current_block_size = starting_block_size;
starting_block_size *= 2;

details::parallel_sort_phase<true>(virt_size, current_block_size, dest);

while ((current_block_size /= 2) >= 2) {
details::parallel_sort_phase<false>(virt_size, current_block_size, dest);

}
}

Listing 5: The section of parallel_sort_inplace that invokes parallel_sort_phase

1 template<bool First, typename KeyType>
2 void parallel_sort_phase(int virtual_size, int block_size,
3 concurrency::array<KeyType, 1>& dest) {
4 const int actual_size = dest.extent.size();
5 const int half_block_size = block_size / 2;
6 const int mask = block_size - 1;
7 const int half_mask = half_block_size - 1;
8 concurrency::parallel_for_each(dest.accelerator_view,
9 concurrency::extent<1>(virtual_size / 2),

10 [=, &dest](concurrency::index<1> i) restrict(amp) {
11 const int i1 = ((i[0] & ~half_mask) << 1) | (i[0] & half_mask);
12 const int i2 = (First) ? ((i1 | mask) - (i1 & mask)) : (i1 + half_block_size);
13

14 if (i2 < actual_size && !(dest[i1] < dest[i2])) {
15 auto temp = dest[i1];
16 dest[i1] = dest[i2];
17 dest[i2] = temp;
18 }
19 });
20 }

Listing 6: Complete implementation of parallel_sort_phase

Line 9 in Listing 6 uses virtual_size to determine the number of kernels to invoke, while

line 14 uses the actual size to avoid accessing elements that don’t exist—the equivalent of

padding the source data with elements that always sort last. For data sets that are slightly

larger than a power of two, this avoids having to allocate almost double the memory required,

while allowing the sort to operate efficiently. However, since kernels are still scheduled for non-

existent elements, overall performance is determined by virtual_size rather than the actual
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Figure 4: Values of i2 based on block size during the first phase

size; arrays of 257 elements and 511 elements, which both have a virtual_size of 512, take

similar amounts of time.

Lines 11 and 12 select the element indexes to compare based on the index i. Figures 3–5

show mappings from i to i1 and i2 in all phases. The values inside the boxes are the iteration

index, from zero to half of virtual_size, while the actual index (horizontal position, and

labelled across the top of each figure) is the value obtained. This scheme provides the set of

comparisons that are shown in Figure 2 and is achieved with efficient arithmetic and bitwise

operators.

Once i1 and i2 are known, the keys at those indexes are compared and exchanged if

necessary. Because of the SIMD nature of the GPU, every kernel executes the same instructions;

from a timing point-of-view, the exchange is always performed. As a result, it is important that

the exchange be efficient. This is achieved primarily by using the key_index_type structure

and sorting indexes into the source. The sort key is included to avoid indirection while sorting;

DirectCompute supports random access reads but the hardware typically prefers to avoid them.
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Figure 5: Values of i2 based on block size during later phases

Unless a specialisation of key_index_type is provided (as shown in Listing 3), the values are

sorted directly. Generic programming is used to identify cases where key_index_type returns

the (internal) SimpleKeyIndex type and avoids the overhead of creating a keys array. However,

for user-defined types that either cannot be compared directly or are too large to exchange often,

providing a key_index_type specialisation can significantly improve performance. As long as

the type returned from key_index_type has an index i, the two constructors in Listing 3 and

a less-than comparison (operator<()), it can be used by parallel_sort.
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5 Listing

Note: Listing 7 is written against the version of C++ AMP included with Visual Studio 11

Beta. Modifications may be required to compile and execute against the final release of Visual

Studio 11.

#pragma once

#include <amp.h>
#include <memory>
#include <type_traits>

namespace bitonic_sort
{

namespace details
{

template<typename SimpleType>
struct SimpleKeyIndex {

SimpleType k;
int i;
SimpleKeyIndex() restrict(cpu, amp) { }
SimpleKeyIndex(SimpleType key, int index) restrict(cpu, amp)

: k(key), i(index) { }
bool operator<(const SimpleKeyIndex& other) restrict(cpu, amp) {

return k < other.k;
}

};
}

template<typename T>
struct key_index_type {

typedef details::SimpleKeyIndex<T> type;
};

namespace details
{

template<typename T>
struct uses_sort_key {

static const bool value = !std::is_same<
typename key_index_type<T>::type, SimpleKeyIndex<T>

>::value;
};

template<bool First, typename KeyType>
void parallel_sort_phase(int virtual_size, int block_size,

concurrency::array<KeyType, 1>& dest) {
const int actual_size = dest.extent.size();
const int half_block_size = block_size / 2;
const int mask = block_size - 1;
const int half_mask = half_block_size - 1;
concurrency::parallel_for_each(dest.accelerator_view,

concurrency::extent<1>(virtual_size / 2),
[=, &dest](concurrency::index<1> i) restrict(amp) {
const int i1 = ((i[0] & ~half_mask) << 1) | (i[0] & half_mask);
const int i2 = (First) ? ((i1 | mask) - (i1 & mask)) : (i1 + half_block_size);
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if (i2 < actual_size && !(dest[i1] < dest[i2])) {
auto temp = dest[i1];
dest[i1] = dest[i2];
dest[i2] = temp;

}
});

}

template<typename KeyType>
void parallel_sort_inplace(concurrency::array<KeyType, 1>& dest) {

const int actual_size = dest.extent.size();
int virt_size = 1, phase_count = 0;
while (virt_size < actual_size) {

virt_size *= 2;
phase_count += 1;

}

int starting_block_size = 2;
while (--phase_count >= 0) {

int current_block_size = starting_block_size;
starting_block_size *= 2;

details::parallel_sort_phase<true>(virt_size, current_block_size, dest);

while ((current_block_size /= 2) >= 2) {
details::parallel_sort_phase<false>(virt_size, current_block_size, dest);

}
}

}
}

template<typename SourceType>
std::shared_ptr<concurrency::array<typename key_index_type<SourceType>::type, 1>>
parallel_sort_keys(const concurrency::array<SourceType, 1>& source) {

const int actual_size = source.extent.size();

typedef typename key_index_type<SourceType>::type Key;
auto pKeys = std::make_shared<concurrency::array<Key, 1>>(

actual_size,
source.accelerator_view

);
auto& keys = *pKeys;
concurrency::parallel_for_each(keys.accelerator_view, keys.extent,

[=, &keys, &source](concurrency::index<1> i) restrict(amp) {
keys[i] = Key(source[i], i[0]);

});

details::parallel_sort_inplace(keys);

return pKeys;
}

template<typename SourceType>
typename std::enable_if<

details::uses_sort_key<SourceType>::value,
std::shared_ptr<concurrency::array<SourceType, 1>>

>::type
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parallel_sort(const concurrency::array<SourceType, 1>& source, bool reverse=false) {
auto pKeys = parallel_sort_keys(source);
auto& keys = *pKeys;

auto pResult = std::make_shared<concurrency::array<SourceType, 1>>(
source.extent.size(),
source.accelerator_view);

auto& result = *pResult;

if (!reverse) {
concurrency::parallel_for_each(result.accelerator_view, result.extent,

[&](concurrency::index<1> i) restrict(amp) {
result[i] = source[keys[i].i];

});
} else {

concurrency::parallel_for_each(result.accelerator_view, result.extent,
[&](concurrency::index<1> i) restrict(amp) {
result[i] = source[keys[keys.extent.size() - 1 - i].i];

});
}
return pResult;

}

template<typename SourceType>
typename std::enable_if<

!details::uses_sort_key<SourceType>::value,
std::shared_ptr<concurrency::array<SourceType, 1>>

>::type
parallel_sort(const concurrency::array<SourceType, 1>& source, bool reverse=false) {

auto pResult = std::make_shared<concurrency::array<SourceType, 1>>(source);
auto& result = *pResult;

details::parallel_sort_inplace(result);

if (reverse) {
auto pNewResult = std::make_shared<concurrency::array<SourceType, 1>>(

result.extent.size(),
result.accelerator_view);

auto& newResult = *pNewResult;
concurrency::parallel_for_each(result.accelerator_view, result.extent,

[&](concurrency::index<1> i) restrict(amp) {
newResult[i] = result[result.extent.size() - 1 - i];

});

return pNewResult;
}

return pResult;
}

}

Listing 7: C++ and C++ AMP code for bitonic_sort.h
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