
Automatic Implementation of Evolutionary
Algorithms on GPUs using ESDL

Steve Dower
Swinburne University of Technology

http://stevedower.id.au

Abstract—Modern computer processing units tend towards
simpler cores in greater numbers, favouring the development of
data-parallel applications. Evolutionary algorithms are ideal for
taking full advantage of SIMD (Single Instruction, Multiple Data)
processing, which is available on both CPUs and GPUs. Creating
software that runs on a GPU requires the use of specialised
programming languages or styles, forcing practitioners to acquire
new skills and limiting the portability of their developments. In
this paper, we present an automatic translation from ESDL,
a domain-specific language for composing evolutionary algo-
rithms from arbitrary operators, to C++ AMP, a C++ extension
for targeting heterogeneous hardware. Generating executable
code from a simple platform-independent description allows
practitioners with varying levels of programming expertise to
take advantage of data-parallel execution, and enables those
with strong expertise to further optimise their implementations.
The automatic transformation is shown to produce code less
optimal than a manual implementation but with significantly less
developer effort. A secondary result is that GPU implementations
require a large population, large individuals or an expensive
evaluation function to achieve performance benefits over the CPU.
All code developed for this paper is freely available online from
http://stevedower.id.au/esdl/amp.

I. BACKGROUND

A. General-purpose GPU

It has been recognised for many years now that while
Moore’s law1 currently still holds, the implication of expo-
nentially increasing CPU clock speeds does not [1], [2]. With
physical limitations (such as the speed of light) constraining
the ability to process data more quickly, chip manufacturers
now provide parallelised devices that process more data simul-
taneously. The rise of SIMD (Single Instruction, Multiple Data)
instruction sets and processor packages with multiple cores have
enabled CPUs to provide ever-increasing power at the expense
of generality. Not every algorithm can be parallelised, and few
to an extent that provides a linear performance increase with
the degree of parallelisation. Algorithms that are best suited
for parallelisation typically process every element of a large
(𝑁 > 105) data set independently. [3]

Despite the prevalence of multi-core CPUs, another approach
gaining popularity for highly parallel applications is the use
of GPUs (Graphics Processing Units). While high-end desktop
CPUs are capable of a degree of parallelism up to thirty-

1The prediction, made by Intel co-founder Gordon Moore, that the number
of transistors that can be placed on an integrated circuit doubles every two
years.

two,2 even entry-level graphics cards provide parallelism in
the hundreds or thousands. The difference between the two is
the complexity of operations that may be performed on each
element, which reflects the distinct purpose and intent of each
type of processor. CPUs are designed for extended, non-linear
sequences of complicated instructions on linear sequences of
data; GPUs are intended to perform simple operations, typically
arithmetic and rarely branching, to large arrays of data. While
both forms of processor are theoretically capable of performing
any task, in practice, selecting the right processor to use for a
task is necessary to achieve optimal performance.

Early use of GPUs for computation involved cleverly defining
and using texture data and shaders. More recently, manufactur-
ers have recognised the growing use of the GPU architecture
for non-graphical applications and have started providing
interfaces for general-purpose computing. Popular examples
include CUDA for devices made by NVIDIA, OpenCL for any
manufacturer providing an implementation for their platform,
and DirectCompute, based on Microsoft DirectX. Each of
these is based on writing “kernels”—programs to execute on
the GPU—that are loaded and invoked at runtime from a
CPU-based program. Each kernel is designed to perform an
operation on a very small subset of data, typically one element,
and the GPU architecture allows thousands of instances of this
kernel (“single instruction”) to execute simultaneously on a
full array (“multiple data”). Kernels are typically written in
relatively low-level languages, the equivalent of developing in
C for embedded devices, although support for the abstractions
common to higher-level languages is improving. [4], [5]

B. C++ AMP

C++ AMP (C++ Accelerated Massive Parallelism) is a library
and a language extension for C++ that supports development for
heterogeneous platforms, including GPUs. The library provides
a common interface for allocating and transferring memory
between the CPU and GPU, iterating over multi-dimensional
collections of data and distributing algorithm execution across
heterogeneous hardware, while a single language extension, the
restrict function modifier, allows GPU kernel definitions to

2The Intel i7 processor has four cores with HyperThreading and SSE,
allowing 32 simultaneous floating-point operations, provided each of the
eight threads perform the same operation to four values at a time. Pipelining
and out-of-order execution may increase this further. Obtaining this level of
parallelisation is every bit as complicated as it sounds.

#include <amp.h>
using namespace concurrency;

void add_arrays(int N, float* A, float* B, float* C) {
array_view<float, 1> vA(N, A), vB(N, B), vC(N, C);

parallel_for_each(vC.extent,
[=](index<1> i) restrict(amp) {
vC[i] = vA[i] + vB[i];

});
}

Fig. 1. Array addition in C++ AMP

intermingle with CPU code written in C++ rather than requiring
separate files and syntax. [3], [4], [6]

C++ functions marked with restrict(amp) are limited
to features supported by the instruction set of GPU processors.
Notable limitations are the lack of virtual methods and
polymorphism, variable references and direct invocations of
code located on the CPU. All functions used in a kernel
must be able to be compiled inline and be marked with
restrict(amp). While using polymorphic class hierarchies
is not possible, templates and generic programming can be
used to provide a similar form of compile-time type dispatch.
User-defined types may be used as array elements and accessed
within kernels using normal C++ syntax, including overloaded
operators. The C++ AMP specification clearly specifies all the
limitations [6].

C++ AMP does not automatically provide superior per-
formance to CUDA or OpenCL; the value proposition is
developer productivity. By analogy, C++ does not provide better
performance than assembly language, though the productivity
benefits are immense. The first step in such an abstraction is
to allow the developer to design for their data, rather than
the hardware. C++ AMP iterates over an array, while CUDA
activates a large number of threads that select data based
on their identifier. This abstraction allows a C++ developer
to implement an algorithm using C++ AMP quickly, while
optimisations for thread and memory layout may be added
later if desired or necessary. In contrast, a CUDA or OpenCL
developer must deal with these complexities in order to create
a working algorithm.

Figure 1 shows a trivial example of adding two arrays
using C++ AMP. The use of C++11 lambdas3 is a convenience
but not mandatory, and apart from the restrict(amp)
modifier, there are no modifications to the C++ language;
array_view, index and parallel_for_each are de-
fined in the concurrency namespace.

At the time of writing, the only available implementation
of C++ AMP is based on DirectCompute, limiting its use
to computers running Microsoft Windows; other compiler
developers are working on implementations for their own
platforms. The DirectCompute implementation is available
as part of Microsoft Visual Studio 11 Beta.4

3Lambda functions were introduced into C++ with the new standard in 2011
and are already supported by most compilers. [7]

4Details and downloads are available at
http://go.microsoft.com/fwlink/?LinkId=190957

FROM random_binary(length=10) SELECT 100 population
YIELD popluation

BEGIN generation
FROM population SELECT 100 parents ∖

USING fitness_proportional
FROM parents SELECT offspring USING crossover, mutate

FROM offspring SELECT population
YIELD population

END

Fig. 2. Simple Genetic Algorithm in ESDL

C. ESDL

Evolutionary System Definition Language (ESDL) [8]–[10]
is a domain-specific language for describing evolutionary
algorithms. It is based on a unified model of evolutionary
algorithms viewed as a composition of independent operators
and groups of individuals. For example, a simple Genetic
Algorithm (SGA) consists of a selection operator and two
variation operators, crossover and mutation, connected through
three groups: population, parents and offspring. This model is
not restricted to simply substituting one operator for another
of similar type, but allows arbitrary connections between any
types of operator. ESDL has been used to describe a wide
range of existing algorithms without loss of fidelity, and often
a significant improvement in clarity. [8]

While operators are treated as the processing mechanism,
groups handle the storage and management of individuals.
There is no way (nor need) to access individuals except by
applying an operator to an entire group to produce a new
group. The resulting operator network is a simple description
of the algorithm structure independent of any particular
operator’s behaviour. In effect, operators are implemented while
algorithms are simply composed.

Figure 2 shows an ESDL definition for an SGA. The FROM-
SELECT statement is the main way in which groups are
created, either from a generator (a parameterised, virtual group
containing infinite individuals) such as random_binary
or operators like fitness_proportional. The YIELD
statement indicates the group containing potential solutions,
typically the main population or equivalent, but which may be
any one or more groups used by the algorithm. Full descriptions
of ESDL are given in [8] and [9].

With all implementation abstracted into operators, the
algorithm description itself is an accurate specification of the
system that is independent of any particular software. As well
as forming a clear textual description, an ESDL system can be
parsed and executed by a software framework, as in esec.5

New algorithms can be implemented and shared by specifying
an ESDL system and the behaviour of any custom operators. A
reader interested in using the algorithm can manually translate
the ESDL to their language of choice, or use a supporting
compiler or framework to do the transformation automatically.

This paper describes a transformation from ESDL to

5A Python-based EC experimentation framework that uses ESDL to define
algorithms, available online at http://esec.googlecode.com/

C++ AMP that may be applied automatically or manually. The
transformation provides a systematic and efficient approach
to exploiting the benefits of GPU hardware for running
evolutionary algorithms without requiring extensive experience
in data-parallel development. esdlc6 has been extended to
support this transformation and the generated code has been
validated and benchmarked against alternative implementations.

II. EVOLUTIONARY ALGORITHMS AND GPU

Various approaches have been used when restructuring
evolutionary algorithms for implementation on a GPU. Most
implementation experience to date has concentrated on optimi-
sations associated with the sequential CPU, while data-parallel
algorithms generally require significant reconceptualisation.
Many efforts move particular operations, typically evaluation,
onto the GPU. For applications where the evaluation phase
consumes the majority of execution time, this approach can
be very successful, since evaluation is typically independent
for each individual. However, the overhead of copying data
between the GPU and CPU may become significant, particularly
since the entire algorithm must halt until evaluation is complete.
[11], [12]

Where evaluation is not parallelisable, not a bottleneck, or
the overhead of copying data is prohibitive, implementing the
entire algorithm as a single GPU kernel or a sequence of
linked kernels may be more appropriate [13], [14]. The use
of island populations or neighbourhoods allows parallelism
to be achieved without significantly changing an existing
implementation [15], though directly transferring a sequential
algorithm to a parallel architecture is not the best way to
utilise the architecture [2]. In particular, most algorithms for
random number generation and sorting are not data-parallel
and translate very poorly to a GPU, often resulting in the use
of tournament style selection rather than approaches requiring
complete ordering (as in [14], [16]). Further, since a kernel
must be applied to a significant number of data segments simul-
taneously—typically in the thousands for modern GPUs—to
achieve useful parallelism, a complete data parallel approach
is necessary to obtain any benefit.

The approach used here is based directly on the com-
positional nature of ESDL. Each operator is represented
as a C++ class that produces a stream of individuals from
another stream—an array of individuals from an existing array.
C++ AMP allows array references to be passed between kernels
without copying via the CPU, making it simple to implement
each operator independently and compose them efficiently,
and a deferred execution model reduces kernel invocation
overheads. Standard or common implementations of pseudo-
random number generators (PRNGs) and sorting algorithms
are not yet available for C++ AMP; here we use a naı̈ve
implementation of a bitonic sorting network [17] (based on
[18], without the overlapping work allocation described by
[19]) and a PRNG based on a hybrid Linear Congruential

6A compiler for ESDL, supporting multiple targets including Python and
C++ AMP, available online at http://esdlc.googlecode.com/

template<class T>
class Operator {

T source;
public:

Operator(T source);
array<float,2>* operator()(int count);
array<float,2>* operator()();

};

Fig. 3. C++ interface for operator classes

Generator and Combined Tausworth Generator [20]. Verifying
the optimality of these algorithms is beyond the scope of this
paper; this work is concerned with the transformation from the
high-level ESDL model to code for heterogeneous computing
platforms.

III. FROM THE MODEL TO THE PROCESSOR

The two main ESDL concepts that require representation in
C++ AMP are groups and operators. Some flexibility available
within ESDL is restricted, as much to encourage proper use of
data-parallel execution as to simplify the transformation task.
For example, in order to achieve the best performance from
GPU-based operators, individuals need to consist of fixed-
length arrays of either integers or real numbers. In effect,
groups are best represented using an array<float, N>
class.7 Such a restriction is not inherent in ESDL, which is
agnostic towards representation, but allowing individuals that
are more flexible ultimately detracts from the performance
benefits of SIMD execution. Here, we store fitness values
for each individual as an extra element in an individual’s
array; using a completely separate array may have performance
benefits, though these are not investigated here.

Operators represent a streaming behaviour and are applied
sequentially to the sequence of individuals that flow into the
new group. An upper limit on the size of this group may
be specified, which maps elegantly to a pull model: each
operator asks its predecessor for the number of individuals
needed, until eventually the source group provides the actual
individuals.8 This model is necessary to support operators
that discard individuals, such as crossovers that produce a
single offspring for each pair of parents, and is also convenient
for working with operators that potentially produce infinitely
long streams. Each operator only needs to supply as many
individuals as requested—when 𝑛 individuals are requested
from an operator, it might request 2𝑛 from its predecessor.
Where necessary, operators can request ‘as many as available,’
either to allow aggregation of the entire source stream or
because no size was specified for the destination group.

For our implementation, an operator is a class that provides
the interface shown in Figure 3: a constructor taking the

7Representations need not be so limited; our implementation supports
variable length individuals (with a predefined maximum) and user-defined
structures. For the purposes of discussion, however, assuming a linear
genotype—array<float, 2>—is a useful simplification.

8The alternative, a push model, has each operator provide as many individuals
as it can to the subsequent operator. This is a useful conceptualisation for a
distributed system, but cannot be implemented efficiently in a limited-memory
environment.

Array-of-structures Structure-of-arrays

Fig. 4. Two approaches to storing parallel streams of data

TABLE I
SUMMARY OF MAPPINGS BETWEEN CONCEPTS AND CLASSES

Concept Class
Groups array<float, 2>*
Joined groups array<float, 2>*[]
Operators Operator (Figure 3)
Generators Operator (with no source)

preceding operator (and operator-specific parameters) and two
overloads of the ‘call’ operator: one with and one without a size
specifier. The first operator in any chain is the merge operator,
which concatenates a variable number of array<float, 2>
instances; all other operators—in particular, those defined by
a user—can assume that their source is a callable operator.
Those operators that are known to produce infinite-length
results may omit the parameterless overload in order to produce
a compilation error rather than an out-of-memory condition
at runtime. Because templates are used, inheritance from an
actual Operator base class is unnecessary and implementing
matching functions is sufficient. The operator() methods
are shown as returning pointers to array instances, since
returning by value would perform deep copies on the GPU.
Our actual implementation uses reference-counted pointers
(shared_ptr) rather than raw pointers.

The ability to join groups with the JOIN-INTO statement is
broadly intended for two purposes: to associate individuals for
combined evaluation and to associate groups for processing by
specially designed operators [8]. While both are theoretically
equivalent, the first is more efficiently represented using an
array of structures and the latter by a structure of arrays (Fig-
ure 4). A structure of arrays is more computationally efficient
to create because it does not require reprocessing groups, and
is better for Differential Evolution’s (DE’s) difference-vector
mutation operation, which uses separate streams of individuals
to perform an operation resulting in a regular group. Only the
structures of arrays form (as an array of array instances) is
used by our C++ AMP implementation. Table I summarises
the C++ types used to implement each ESDL concept.

ESDL is based around the idea of operator composition,
which makes it important that users are able to provide new
operator implementations. Interoperability concerns between
C++ and ESDL include the different function invocation syntax,
primarily in C++ using positional rather than named parameters,
insufficient information in C++ prototypes for use from ESDL
and templated object instantiations requiring more information
than an ESDL compiler has available. Our solution involves
three parts: first, ESDL pragma commands (lines beginning
with a backtick `) are used to include header files containing

operator definitions. These files are scanned for specially
formed comments that provide a code generation template
including parameter names and default values. Finally, as well
as an implementation of the Operator type shown in Figure 3,
a separate instantiation function (a factory function, rather than
a constructor) is provided, allowing parameter types to be
inferred.9 This function is invoked by code generated based
on the ESDL definition and the comment specifiers. Figure 5
shows an outline of a header file containing a mutation operator
for DE, and Figure 6 shows a complete DE system in ESDL
that may be compiled for either esec or C++ AMP.

Any language-specific transformation from ESDL must
deal with five constructs: stores, blocks, yields, functions
and pragmas [8]. Stores represent each FROM-SELECT and
JOIN-INTO statement and create (“store”) a new group or
groups from one or more existing groups and a chain of
operators. Blocks are delimited by BEGIN or REPEAT and
END statements and represent a sequence of operations that are
repeated: one named block (such as GENERATION in Figure 6)
is executed each iteration, while REPEAT blocks are executed
a given number of times. Yields notify an external listener
that the specified group should be evaluated and used for
statistical analysis. Functions allow externally provided code
to perform arbitrary functionality, such as writing debugging
output, immediate statistical analysis or parameter adaptation.
Finally, pragmas specify compiler-specific commands.

Our automatic transformation of ESDL uses pragmas to
include user-defined operators and to specify a default evaluator.
The default evaluator is applied to groups that are created from
generators and propagates to other groups through stores. User-
defined operators and functions are specified in C++ header files
and included using an `include pragma that is converted to
a C++ #include statement. Only directly included files are
parsed for signature specifications.

Function calls and operator constructions are realised as
direct calls to the name as provided in the signature specifica-
tion. Some overload resolution is performed by the converter
based on parameter names, while type-based overloading may
be performed by the C++ compiler. Parameters are mapped
into the locations they appear in the specification, substituting
default values where necessary. Figure 7 shows an example of
defining and calling a function from ESDL, including the C++

code generated for the call.
Repeated blocks are implemented using a for loop while

named blocks use a cascaded if-else structure to select the
block to use for the current iteration.

Since store operations provide the compositional part of
algorithms specified using ESDL, they comprise most of the
generated code. A store operation consists of three steps: merge
or join the source groups, construct the chain of operators and
take the individuals required for the destination groups. To
provide merging, a special operator is constructed that takes
an arbitrary number of groups as sources. One generator may

9C++ infers parameter types on function calls but not type definitions,
constructors or static methods.

template<typename T>
class mutate_de_t {

T source;
float scale;
float cr;

public:
mutate_de_t(T source, float scale, float crossover_rate)
: source(source), scale(scale), cr(crossover_rate) { }

array<float, 2>* operator()() {
array<float, 2>* individuals = source();
...

}

array<float, 2>* operator()(int count) {
array<float, 2>* individuals = source(count);
...

}
};

// ESDL operator: mutate_de(scale=(float)0.8,crossover_rate=(float)0.9)
template<typename T>
mutate_de_t<T> mutate_de(T source, float scale, float crossover_rate) {

return mutate_de_t<T>(source, scale, crossover_rate);
}

Fig. 5. ESDL prototype and C++ function for a DE mutation operator

`include "mutate_de.h"
`include "rastrigin.h"
`evaluator Rastrigin()
length = 10

FROM random_real(length, lowest=-2, highest=2) SELECT (size) population USING unique
YIELD population

BEGIN GENERATION
FROM population SELECT (size) bases USING fitness_sus(mu=size)

JOIN bases, population, population INTO mutators USING random_tuples
FROM mutators SELECT trials USING mutate_DE(scale, crossover_rate=CR)

JOIN population, trials INTO trial_pairs USING tuples
FROM trial_pairs SELECT population USING best_of_tuple

YIELD population
END

Fig. 6. An ESDL system for DE

// ESDL function: max(a=(float)0, b=(float)0, c=(bool)false)
float max(float a, float b, bool c);

// Invocation in ESDL; named, case-insensitive
// with implicit 'A=A' parameter.
k = Max(B=5, A, C=TRUE)

// Generated invocation in C++
auto k = max((float)A, (float)5, (bool)true);

Fig. 7. Example function specification and invocation

be included as the last source; its infinite size ensures that
no later groups or generators will ever be used. Invoking this
merge operator takes the requested number of individuals from
the concatenated sources. By abstracting the sequential nature
of repeated taking (such that each request is fulfilled from
adjacent but non-overlapping segments of the source groups)
other operators do not need to reimplement this functionality.
Code generated for the first step of a store operation produces
an instance of the merge operator with one or more groups or

generators, as shown on line 3 of Figure 8.

The second step chains the listed operators together, applying
each to the result of the previous. Each operator is a function
call that takes the preceding operator instance, any other
parameters and returns an instance of the operator. Depending
on the purpose of the operator, instantiation may perform all
required processing or defer it until individuals are requested.
For example, a sorting operator can evaluate the previous
operator to produce a group, sort and return it immediately,
while a variation operator might choose to retain the original
source operator and only process individuals as requested to
avoid unnecessary computation.

For JOIN-INTO statements, each source group is wrapped
in a separate merge operator and passed to the join operator
(“joiner”). A joiner must be specialised for the number of
sources it can accept, which allows operator designers to
restrict the application of a joiner with a minimum of runtime

1 // FROM population SELECT (size) bases
2 // USING fitness_sus(mu=size)
3 auto _src_0 = merge(population);
4 auto _stream_0 = fitness_sus(_src_0, (int)size);
5 auto bases = _stream_0((int)size);

Fig. 8. C++ code generated for an ESDL store operation

1 // JOIN bases, population, population INTO mutators
2 // USING random_tuples
3 auto _stream_1 = random_tuples(merge(bases),
4 merge(population),
5 merge(population));
6 auto mutators = _stream_1();

Fig. 9. C++ code generated for a store operation that used a joiner

overhead.10 Only one joiner may be applied in a JOIN-INTO
statement, and as a result, no operator chaining is required. An
example of the code generated for a JOIN-INTO statement is
shown in Figure 9.

The final step for all store operations is to create and store
the new groups. Individuals are taken from the last chained
operator using one of the two operator() overloads shown
in Figure 3. Both figures 8 and 9 (at lines 5 and 6, respectively)
use these methods with the C++ auto keyword to create and
store the resulting groups.

IV. PERFORMANCE BENEFITS

To show the possible benefits available from mapping ESDL
to compilable code, we compare both the performance and
development effort for five implementations of Differential
Evolution (DE) [21]. The algorithm is identical (DE/rand/1/bin)
in each case, and the results are similar though not identical,
due to differences in random number generators. DE individuals
are vectors of 10 real values, initially between −2.0 and 2.0,
and a population of 10 000 individuals was used; large enough
to provide reliable measurements, despite being biased towards
making the GPU implementations perform better (and far too
large for a ten-dimensional problem. This bias is revisited
later).

The Rastrigin benchmark function:

𝑓 =
∑︁𝑛

𝑖=1

(︀
𝑥2
𝑖 − 10cos (2𝜋𝑥𝑖) + 10

)︀
is used to determine fitness, Stochastic Universal Sampling
is used for fitness-proportional selection of bases and all
degenerate vector selections are allowed. A scaling factor of 0.8
and a crossover rate of 0.9 are used. (These are not intended
as an ideal parameter selection for DE; we are concerned with
execution performance, and DE uses a sufficiently complex set
of operations to produce interesting results.)

Performance is measured in milliseconds per iteration,
including random number generation and statistics collection.
The time taken to display results to the screen is not included.
Code complexity is determined from our implementations using
Halstead’s complexity measures, though we point out that we

10Variadic templates could also be used for this. However, the version of
the C++ compiler used does not support variadics.

TABLE II
COMPARISON OF RELATIVE IMPLEMENTATION COMPLEXITY AND SPEED

WITH 10 000 INDIVIDUALS

Target Complexity Speed (ms/gen)
(a) ESDL (esec) 1 430.
(b) ESDL (C++ AMP) 12 14.1
(c) Python 13 233.
(d) C++ 28 6.2
(e) C++ AMP 81 7.1

have avoided the effort and development time calculations and
focused on a relative comparison of the variety and repetition
of operations and symbols in a piece of code [22].11 Only code
that an end user would need to write is included; compilers
and standard evolutionary operators are not assessed. These
values for complexity are not mathematically useful, but are an
indication for readers who are not familiar with how difficult
developing for a particular platform or language may be.
Algorithmic complexity is irrelevant, since each implementation
is of the same algorithm.

The five target implementations developed were: ESDL for
esec (Python), ESDL for C++ AMP, hand-coded Python,
hand-coded C++ (using the Standard Template Library (STL))
and hand-coded C++ AMP.12 Relative code complexity and
execution times per generation are shown in Table II. ESDL for
esec is used as a baseline for complexity with a value of one,
and while ESDL for C++ AMP uses an almost identical system
definition, the implementation of the mutation operator adds
significant complexity. Developing from scratch for Python
requires similar effort to ESDL for C++ AMP, though even with
performance tuning the execution is an order-of-magnitude
slower a natively compiled language. C++ has the benefit
of a mature optimising compiler and extensive use of the
STL reduces the effort required (or rather, transfers the effort
into learning the STL). Finally, developing for C++ AMP
requires an understanding of algorithm parallelisation, new
libraries and the underlying hardware platform, as well as
generally more complex code. All implementations were
profiled and significant bottlenecks were removed to avoid
unfair comparisons, though thorough tuning was not performed.

The hardware used for testing was an NVIDIA GeForce
GT 540M with 96 cores and 4GB available memory (half
dedicated and half system) and an Intel i7-2720QM CPU with
eight logical cores (of which only one was ever used) running
at 2.20GHz, 8GB RAM. CPython 2.7.2 64-bit was used for
the Python implementations, while Microsoft Visual C++ 11
Beta was used for the C++ implementations. All experiments
were run on Windows 7 64-bit. Performance measurements
were taken using Python’s time.clock() function and the

11Most common complexity measures are not comparable between different
languages and paradigms. In particular, McCabe’s Cyclomatic Complexity [23]
is not relevant since the algorithm is the same in each case, while coupling
and cohesion measures are only relevant for object-oriented software designs.

12All source code is freely available from the author’s website
(http://stevedower.id.au/esdl/amp/), though some other dependencies are re-
quired in order to compile and use the code.

0 ms 5 ms 10 ms 15 ms

e

d

b

e

d

b

e

d

b

e

d

b

P
o
p

 ÷
1
0

U
n

ch
an

g
ed

D
im

 ×
1

0
P

o
p

 ×
1
0

RNG

Selection

Mutation

Comparison

Statistics

Fig. 10. Normalised comparison of (b) the transformed ESDL, (d) the C++ and (e) the C++ AMP implementations.

Concurrency Visualizer included with Visual Studio 11. The
speed measurements in Table II are the mean timings over one
hundred iterations. (Each algorithm was run for 105 iterations;
excluding the first five allows for initialisation and lazy-loading
[24].) Measurement instrumentation has a noticeable effect
(approximately 10 %) on the performance, largely due to
interference with C++ AMP’s deferred execution model. This
has not been compensated for in the reported timings.

As expected, the performance benefit achieved increased with
implementation difficulty. By design, esec is a very flexible
framework, which reduces the implementation difficulty but
adds a number of overheads; function-level profiling reveals
no easily-fixed bottleneck. Using any form of natively com-
piled language provided an order-of-magnitude performance
increase. While further execution improvement is possible by
implementing a monolithic algorithm (Table IIc) rather than
composing discrete operators, the added effort becomes harder
to justify. Further, the loss of flexibility and maintainability
is a significant restriction on research applications, which are
likely to involve fewer runs of a greater variety of algorithms
than commercial applications where the algorithm is not being
modified and timeliness is more important.

Moving from a single-threaded C++ implementation (Ta-
ble IId) to the many-threaded C++ AMP implementations
(Table IIb and e) showed little performance variation, despite
the size of the DE population favouring the parallel implemen-
tations. To observe the sensitivity of each C++ implementation
with regards to the amount of data, measurements were taken
at the original settings (population of 10 000, ten dimensions),
with a population one-tenth of that, a population ten times
larger and with the problem dimension increased to 100.
Figure 10 shows the mean time taken by each step in the
three C++ implementations, normalised to match the original
settings. In effect, the times for population ×10 (100 000) and

dimension ×10 (100) are shown at one-tenth actual length and
population ÷10 (1000) at ten times longer. An implementation
that displays linear performance with the varied parameter will
have similar normalised timings; shorter times indicate faster
per-size execution, rather than less actual execution time.

Figure 10 shows that the performance improves most
dramatically for the GPU implementations ((b) and (e); the
truncated lines extend so far as to render the other values
unreadable) as population size or dimension increases. The
processing time for the CPU implementation (d) increases faster
than population size while the others see a sub-linear increase.
With a ten-dimensional problem, neither GPU implementation
outperforms the CPU implementation until a population larger
than ten thousand is used. Even with much smaller populations,
the overwhelming number of individuals prevents DE from
performing at its best, such that the performance increase due to
using the GPU does not provide any actual benefit. Increasing
the dimension has a more dramatic effect, suggesting that
population size should not be used as the sole heuristic for
data-parallel performance.

Despite the population size negating the parallelism benefits
in terms of algorithm results, there are a number of useful
observations from the results in Figure 10. Firstly, the evaluation
timing (included as part of “Comparison”) increases linearly
with population size on the CPU, while being significantly
sublinear on the GPU. The Rastrigin function includes a number
of cosine evaluations, which are notoriously expensive on the
CPU. However, this is effectively a constant factor between
implementations, and linearity with population size and di-
mensionality validates the prior assumptions that evaluation
is inherently parallelisable. Similarly, sorting the population
(included in “Statistics” and also “Selection” for (b); the other
implementations optimised by reusing a previous sort result)
does not scale well on the CPU as population size increases.

With a well-tuned GPU sort implementation (unlike that used
here) and greater optimisation in the code generator (to remove
the redundant sort), better performance can be achieved in this
area through updated tooling, which provides the benefit to
users with no effort on their part. Sort times are unaffected
by individual size except for overheads; the execution time of
sort algorithms that do not require copying are constant against
dimensionality.

More interesting than comparing the performance of three
efficient implementations is the relative code complexity. We
have already identified that, with little effort, compiling ESDL
code to C++ shows an order-of-magnitude performance improve-
ment. Currently, creating an optimised C++ implementation
of an algorithm based on a textual description or existing
implementation is a significant undertaking. Consider, however,
the case where the publication includes an ESDL definition
and a clear specification of each extra operator. An automatic
conversion can produce code that requires significantly less
development, debugging and validation effort, can benefit from
future improvements to the tools and libraries, can act as an
easily read description of the algorithm and provide execution
performance comparable to hand-crafted implementations.

V. SUMMARY

This paper has presented an approach for transforming
ESDL systems into code that is executable on heterogeneous
computing platforms using C++ AMP. The implementation is a
proof-of-concept and does not produce the peak performance
that can be achieved by data-parallel processing. However, this
work has shown that the ability to take advantage of some of
the available processing power does not need to be restricted to
expert developers and that future improvements can be made to
the transformation without requiring changes to user’s existing
code (specifically, their ESDL system definitions).

It is widely recognised that there is much work still required
in effectively implementing evolutionary algorithms on data-
parallel computing platforms such as GPUs. In particular,
parallel random number generation and sort algorithms are
yet to mature to a state comparable to those for CPUs. Further,
GPUs do not provide any performance benefits without a
sufficient amount of data, regardless of whether that is obtained
by increasing the count or the dimension of solutions used, with
the exception that an expensive and parallelisable evaluation
function may be usefully accelerated independently from the
evolutionary algorithm when data transfer overheads are not
significant.

ESDL has been shown to be a useful model for describing
evolutionary algorithms in a platform independent manner.
The ability to compile and use an ESDL system on high-
performance desktop hardware makes heterogeneous computing

platform accessible to practitioners without requiring specific
expertise in GPU development.

REFERENCES

[1] H. Sutter, “The free lunch is over,” Dr. Dobb’s Journal, vol. 30, March
2005.

[2] ——, “Welcome to the jungle,” 2011, http://herbsutter.com/welcome-to-
the-jungle/.

[3] K. Gregory, “Overview and C++ AMP approach,” September 2011,
http://www.gregcons.com/CppAmp/OverviewAndCppAMPApproach.pdf.

[4] D. Dagum, “Introducing C++ accelerated mas-
sive parallelism (C++ AMP),” June 2011,
http://blogs.msdn.com/b/vcblog/archive/2011/06/15/introducing-
amp.aspx.

[5] NVIDIA Corp., “Parallel programming and computing platform,” 2012,
http://nvidia.com/cuda.

[6] Microsoft Corp., “C++ AMP : Language
and programming model,” January 2012,
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/03/c-
amp-open-spec-published.aspx.

[7] ISO/IEC 14882:2011, “Information technology – programming languages
– C++,” 2011.

[8] S. Dower, “ESDL and an abstraction for evolutionary algorithms,” Ph.D.
dissertation, Swinburne University of Technology, unpublished.

[9] S. Dower and C. J. Woodward, “ESDL: a simple description language for
population-based evolutionary computation,” in Proc. 13th Annu. Conf.
Genetic and Evolutionary Computation. Dublin, Ireland: ACM, 2011,
pp. 1045–1052.

[10] ——, “Evolutionary system definition language,” Swinburne University
of Technology, Tech. Rep. TR/CIS/2010/1, 2010.

[11] S. Harding and W. Banzhaf, “Fast genetic programming on GPUs,” in
Genetic Programming. Springer, 2007, pp. 90–101.

[12] O. Maitre et al., “Coarse grain parallelization of evolutionary algorithms
on GPGPU cards with EASEA,” in Proc. 11th Annu. Conf. on Genetic
and evolutionary Computation. ACM, New York, United States, 2009,
pp. 1403–1410.

[13] P. Krömer et al., “Many-threaded implementation of differential evolution
for the CUDA platform,” in Proc. 13th Annu. Conf. Genetic and
Evolutionary Computation. Dublin, Ireland: ACM, 2011, pp. 1595–1602.

[14] S. Debattisti et al., “Implementation of a simple genetic algorithm within
the CUDA architecture,” in 11th Annu. Conf. Companion Genetic and
Evolutionary Computation. ACM, 2009.

[15] E. Cantú-Paz, “A survey of parallel genetic algorithms,” Calculateurs
paralleles, reseaux et systems repartis, pp. 141–171, 1998.

[16] P. Pospichal et al., “Parallel genetic algorithm on the CUDA architecture,”
in Applications of Evolutionary Computation. Springer, 2010, pp. 442–
451.

[17] S. Dower, “Bitonic sort for C++ AMP,” Swinburne University of
Technology, Tech. Rep. TR/CIS/2012/1, 2012.

[18] K. E. Batcher, “Sorting networks and their applications,” in Proc. April
30–May 2, 1968, spring joint computer conf. ACM, 1968, pp. 307–314.

[19] G. Bilardi and A. Nicolau, “Adaptive bitonic sorting: An optimal parallel
algorithm for shared memory machines,” Cornell University, Tech. Rep.,
1986.

[20] L. Howes and D. Thomas, “Efficient random number generation and
application using CUDA,” in GPU Gems 3. Addison Wesley, 2007.

[21] K. V. Price et al., Differential Evolution. Springer, 2005.
[22] M. H. Halstead, Elements of Software Science. Elsevier, 1977.
[23] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng., vol. 2,

pp. 308–320, December 1976.
[24] S. Wybranski, “How to measure the perfor-

mance of C++ AMP algorithms?” December 2011,
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/12/28/how-to-
measure-the-performance-of-c-amp-algorithms.aspx.

