
Disambiguating Evolutionary Algorithms
Composition and Communication with ESDL

Steve Dower

A dissertation presented for fulfillment of the requirements for the award of
Doctor of Philosophy

2012

i

Abstract

Evolutionary Computation (EC) has been developing as a field for many
years. Encompassing a range of intelligent and adaptive search, optimi-
sation and decision-making algorithms, there is a wealth of potential for
EC to be applied to problems in many domains. People who are new to
the field may want to learn, understand or apply EC, while those who
are more experienced are looking to extend, develop and teach. Unfor-
tunately, it is not clear how best to approach these tasks. Ideally, stu-
dents should have guidance through the field, including how EC works
and approaches to algorithm design; researchers should have canoni-
cal structures, implementations, presentation formats and comparison
frameworks; developers should have easy access to interested users, as
well as the potential to differentiate their work in terms of performance,
flexibility and aesthetics.

This thesis provides a model of the structure of Evolutionary Algo-
rithms (EAs) based on operator composition. A small number of discrete
element types and their interactions are defined, forming an algorithm
architecture that supports existing concepts and provides direction for
those looking to understand, use and improve EAs. A simple description
language based on these elements is created to support communication
between authors, readers, designers and software. Implementation con-
cerns, ideas and potential are discussed to assist those with an interest
in developing the simulation tools and frameworks used within the field.
The model and description language are shown to concisely and unam-
biguously describe EAs in a directly publishable form.

ii

iii

Acknowledgements

I would like to specially acknowledge the contributions and assistance provided by
people and organisations, without whom, this work could not have occurred.

My supervisory team, Tim Hendtlass, Clinton Woodward and James Mont-
gomery, for their support, inspiration and only interfering when it was necessary;
the Faculty of Information and Communication Technologies at Swinburne Univer-
sity of Technology for providing my candidature and support throughout my PhD;
the Australian Government, for the financial support of the Australian Postgraduate
Award; Jason Brownlee, Raj Vasa, Irene Moser and Naomi Parkinson for their en-
thusiastic support and proofreading; and finally, Kev, for keeping me focused while
I worked.

iv

v

Declaration

I declare that: This thesis contains no material which has been accepted for an
award to myself for any other degree or diploma, except where due reference is
made in the text of the thesis. This thesis, to the best of my knowledge contains
no material previously published or written by another person except where due
reference is made in the text of the thesis. Where the work is based on joint research
or publications, this thesis discloses the relative contributions of the respective works
or authors.

Steve Dower
Date: May 25, 2012

vi

vii

Contents

Abstract i

Acknowledgements iii

Declaration v

List of Figures xv

List of Tables xvii

List of Code Listings xix

1 Introduction 1
1.1 Motivation . 1
1.2 Research Statement . 3
1.3 Contributions . 4
1.4 Structure . 4
1.5 Publications . 5

2 Unification 7
2.1 Originating Algorithms . 7

2.1.1 Evolution Strategies . 8
2.1.2 Evolutionary Programming 11
2.1.3 Genetic Algorithms . 13
2.1.4 Other Algorithms . 16

2.2 Algorithm Cliques . 16
2.2.1 Segregation in Research . 17
2.2.2 Segregation in Design . 18
2.2.3 Segregation in Implementation 20

2.3 ‘Inventing’ algorithms for optimisation 21
2.3.1 What are we looking for? . 22
2.3.2 Where do we look? . 24
2.3.3 Is this an Evolutionary Algorithm? 25

CONTENTS viii

2.4 Chapter Summary . 25

3 Model 27
3.1 Defining what to solve . 27

3.1.1 Problems . 27
3.1.2 Evaluators . 29

3.2 How to ‘have’ a population . 30
3.2.1 Individuals . 30
3.2.2 Groups . 31
3.2.3 Streams . 32

3.3 How to ‘improve’ a population . 33
3.3.1 Operators . 33
3.3.2 Merging . 36
3.3.3 Partitioning . 37
3.3.4 Joining . 37
3.3.5 Filtering . 40
3.3.6 Selection . 41
3.3.7 Variation . 42
3.3.8 Termination . 43

3.4 How to share an algorithm . 45
3.5 Example Algorithm Descriptions . 48

3.5.1 Evolution Strategies . 48
3.5.2 Evolutionary Programming 49
3.5.3 Genetic Algorithms . 51
3.5.4 Differential Evolution . 51
3.5.5 Genetic Programming . 53
3.5.6 Steady-State Genetic Algorithms 54
3.5.7 Particle Swarm Optimisation 55

3.6 Chapter Summary . 56

4 ESDL 59
4.1 Reusable Software . 59

4.1.1 Domain-Specific Languages 60
4.1.2 Code Reuse in Evolutionary Computation 62

4.2 Describing algorithms with ESDL . 65
4.2.1 Basic Conventions . 65
4.2.2 Composing Algorithms . 66
4.2.3 Operators and Parameters . 69
4.2.4 Evaluating Individuals . 71

4.3 Structuring ESDL systems . 74

CONTENTS ix

4.3.1 Algorithm Iteration . 74
4.3.2 Statistics Collection and Termination 76

4.4 Example ESDL Systems . 78
4.4.1 Evolution Strategies . 78
4.4.2 Evolutionary Programming 79
4.4.3 Genetic Algorithms . 82
4.4.4 Differential Evolution . 82
4.4.5 Genetic Programming . 85
4.4.6 Steady-State Genetic Algorithms 87
4.4.7 Particle Swarm Optimisation 88

4.5 Chapter Summary . 88

5 Execution 91
5.1 Evolutionary Algorithm Software . 91
5.2 Interpreting ESDL Systems . 99

5.2.1 Memory Model . 99
5.2.2 Sequence Model . 101
5.2.3 Extensibility Model . 105
5.2.4 Parsing and Compiling . 110
5.2.5 Summary . 116

5.3 Comparison with Existing Software 116
5.4 Chapter Summary . 118

6 Application 119
6.1 A Hypothetical Workflow . 119

6.1.1 Story 1 . 120
6.1.2 Story 2 . 123

6.2 Applying the ESDL approach . 126
6.2.1 Designing Algorithms . 129
6.2.2 Sharing Algorithms . 132
6.2.3 Summary . 135

6.3 Executing ESDL systems . 135
6.3.1 Major Components . 136
6.3.2 Memory Model . 138
6.3.3 Sequence Model . 140
6.3.4 Extensibility Model . 142
6.3.5 Configuration Files . 142
6.3.6 Summary . 143

6.4 Code Comparison . 143
6.4.1 esec Configurations . 145

CONTENTS x

6.4.2 ECJ Parameter Files . 146
6.4.3 FakeEALib Programs . 146
6.4.4 C# Programs . 147
6.4.5 Results . 147

6.5 Chapter Summary . 148

7 Conclusions 151
7.1 Research Goals . 151
7.2 Contributions . 153
7.3 Limitations . 154

7.3.1 Qualitative Assessment . 154
7.3.2 Informal Language Model . 154
7.3.3 Volumetric Analysis . 155

7.4 Future Work . 156
7.4.1 Tool Support . 156
7.4.2 Distributed Implementations 157
7.4.3 Language Extensions . 158
7.4.4 Theoretical Formalism . 158
7.4.5 Usability Study . 159

7.5 Final Words . 159

Bibliography 161

A Standard Library 169
A.1 Overview . 169
A.2 Selectors . 170

A.2.1 Repeated . 170
A.2.2 Repeat Each . 170
A.2.3 Best . 171
A.2.4 Worst . 171
A.2.5 Uniform Random . 172
A.2.6 Uniform Shuffle . 172
A.2.7 Rank Proportional . 173
A.2.8 Rank-based Stochastic Uniform Sampling 175
A.2.9 Tournament . 176
A.2.10 Fitness Proportional . 178
A.2.11 Fitness-based Stochastic Uniform Sampling 180

A.3 Filters . 181
A.3.1 Unique . 181
A.3.2 Duplicates . 181

CONTENTS xi

A.3.3 Legal . 182
A.3.4 Illegal . 182

A.4 Joiners . 183
A.4.1 Tuples . 183
A.4.2 Random Tuples . 184

A.5 Variation Operators . 185
A.5.1 Mutate Random . 185
A.5.2 Mutate Insert . 187
A.5.3 Mutate Delete . 189
A.5.4 Crossover . 191
A.5.5 Crossover Different . 193
A.5.6 Crossover Uniform . 195
A.5.7 From Tuple . 197
A.5.8 Best of Tuple . 198
A.5.9 Crossover Tuple . 199

A.6 Binary-valued Operators . 200
A.6.1 Representation . 200
A.6.2 Random Binary Generator . 200
A.6.3 Binary True and False Generators 202
A.6.4 Mutate Bit Flip . 204
A.6.5 Mutate Inversion . 205
A.6.6 Mutate Gap Inversion . 206

A.7 Real-valued Operators . 208
A.7.1 Representation . 208
A.7.2 Random Real Generator . 208
A.7.3 Real Value, Low, Mid and High Generators 210
A.7.4 Clamp . 212
A.7.5 Mutate Delta . 213
A.7.6 Mutate Gaussian . 215
A.7.7 Crossover Average . 217

A.8 Integer-valued Operators . 219
A.8.1 Representation . 219
A.8.2 Random Integer Generator 219
A.8.3 Integer Value, Low, Mid and High Generators 221
A.8.4 Clamp . 223
A.8.5 Mutate Delta . 224
A.8.6 Mutate Gaussian . 226
A.8.7 Crossover Average . 228

CONTENTS xii

B ESDL Grammar 231

C esdlc Architecture 233
C.1 Overview . 233
C.2 Lexer . 234
C.3 Parser . 234

C.3.1 System class . 235
C.3.2 FluentSystem class . 235
C.3.3 AstSystem class . 236
C.3.4 Validator class . 237

C.4 Code Generation . 239
C.4.1 Emitters . 239
C.4.2 esec emitter . 240

C.5 Summary . 247

D Parallel Execution 249
D.1 Background . 249
D.2 C++ AMP . 251
D.3 Execution Model . 253

D.3.1 Memory Model . 254
D.3.2 Sequence Model . 257
D.3.3 Extensibility Model . 257
D.3.4 Command-line Options . 261

D.4 cppamp emitter . 263

E esec Architecture 271
E.1 Overview . 271
E.2 Python . 272
E.3 Architecture . 275

E.3.1 Experiments . 275
E.3.2 Species . 275
E.3.3 Monitors . 276
E.3.4 Landscapes . 277

E.4 Use . 278
E.4.1 Configuration Dictionaries . 278
E.4.2 run.py Script . 279
E.4.3 Embedding esec . 282

E.5 Extensibility . 282
E.6 Summary . 284

CONTENTS xiii

F Comparison Code 285
F.1 Evolution Strategies . 285
F.2 Evolutionary Programming . 290
F.3 Genetic Algorithms . 294
F.4 Differential Evolution . 298
F.5 Genetic Programming . 303
F.6 Steady State Genetic Algorithms . 306
F.7 Particle Swarm Optimisation . 311

Glossary 319

CONTENTS xiv

xv

List of Figures

2.1 A Gaussian probability distribution, also known as a normal distri-
bution . 9

2.2 One iteration of a (4, 10) -ES that reuses parents to create a larger
pool of solutions . 10

2.3 Per-component distributions (a) without and (b) with angles, to allow
non-orthogonal variations (adapted from [8]) 11

2.4 A finite-state machine (adapted from [33]) 12
2.5 Diagrammatic representation of crossover in GA creating (a) one or

(b) two new offspring . 15

3.1 Three groups containing subsets of all known individuals 32
3.2 Operator classifications and examples 35
3.3 Merging streams A and B into group merged 36
3.4 Partitioning stream A into two finite streams 37
3.5 Joining groups A and B by index . 37
3.6 Array-of-structures and structure-of-arrays representations 39
3.7 A filter that removes approximately half of the individuals from a

stream . 40
3.8 A selector that creates a stream containing each individual twice . . . 41
3.9 General structure of iterative algorithms 44
3.10 Iteration phase of the algorithm in Listing 3.2 47
3.11 Evolution Strategies evolutionary algorithm 49
3.12 Evolutionary Programming evolutionary algorithm 50
3.13 Genetic Algorithms evolutionary algorithm 50
3.14 Differential Evolution evolutionary algorithm 52
3.15 Genetic Programming evolutionary algorithm 54
3.16 Steady-State Genetic Algorithms evolutionary algorithm 55
3.17 Particle Swarm Optimisation algorithm 56

4.1 The FROM-SELECT statements from Listing 4.5 shown graphically 68
4.2 Structure of an ESDL system with multiple named iteration blocks . 75
4.3 Diagrammatic representation of single-point crossover 82

LIST OF FIGURES xvi

4.4 Diagrammatic representation of uniform crossover selecting compo-
nents from each parent . 84

4.5 GP individual represented as a function tree 85

5.1 An operator graph from framework i (HeuristicLab) for a simple GA 96
5.2 Overview of the reviewed software architectures 98
5.3 Blackboard with named references 99
5.4 The general store operation . 102
5.5 The general function operation . 102
5.6 Store and function operations interacting through a shared blackboard103
5.7 Simplified representation of Figure 5.6 that omits the blackboard . . 104
5.8 Yielding groups under an immutable memory model 104
5.9 Yielding groups by copying to publicly accessible memory 105

6.1 Flowchart of the hypothetical Angry Mob Optimisation algorithm . . 122
6.2 Elements of the hypothetical Angry Mob Optimisation algorithm . . 122
6.3 Adjacency map created for Edge Recombination Crossover 134
6.4 Architecture of an esec experiment 137
6.5 The Population class from FakeEALib 146
6.6 Lines of code relative to esec . 149
6.7 Words of code relative to esec . 149
6.8 Characters of code relative to esec 149

7.1 Splitting operators across distributed processing nodes 158

C.1 The compilation flow of esdlc . 233
C.2 Top-level esdlc parser structure . 237

D.1 Potential arrangements for an EA on heterogeneous hardware 251
D.2 Compilation workflow of the cppamp emitter 253

E.1 esec package hierarchy . 272
E.2 Screenshots of esecui . 282

xvii

List of Tables

5.1 Frameworks and libraries for implementing EAs 92
5.2 ESDL keywords . 112

6.1 Best solutions found using Angry Mob Optimisation 122
6.2 Variable values for Listing 6.1 . 125
6.3 Lines of code for each algorithm . 149
6.4 Words of code for each algorithm . 149
6.5 Characters of code for each algorithm 149

C.1 Regular Expressions used to identify ESDL tokens 234

D.1 Command-line options for executables created with cppamp 261

E.1 Event handlers required on monitors 277
E.2 run.py batch settings . 281

LIST OF TABLES xviii

xix

List of Code Listings

3.1 Analogy of scoping rules using C++ 34
3.2 Example of a possible specification language inspired by functional

programming . 46
3.3 Listing 3.2 adapted to use recursion 47
3.4 Example of a possible specification language inspired by a pipeline

structure . 48

4.1 Example PPCEA script for dynamically adjusting EA parameters
(adapted from [58]) . 63

4.2 Representation of an algorithm using EAML (adapted from [94]) . . . 64
4.3 Examples of the FROM clause . 67
4.4 Examples of the SELECT clause . 68
4.5 Example FROM-SELECT statements with USING clauses 68
4.6 Example JOIN-INTO statements . 69
4.7 Valid operator specifications with and without arguments 70
4.8 Equation (4.1) as a Python function 70
4.9 Example invocation of the adapt function in Listing 4.8 71
4.10 Example evaluator specification with the EVALUATE-USING statement . . 72
4.11 Potentially ambiguous use of a parameterised evaluator 72
4.12 Unambiguous use of an evaluator that is parameterised over time . . 73
4.13 Using a credit assignment evaluator with joined individuals 73
4.14 Potentially incorrect use of credit assignment where groupA and groupB

share individuals . 73
4.15 Assigning credit based on the position within the joined individual . 74
4.16 ESDL system definition with an initialisation section and two itera-

tion blocks . 75
4.17 Using a REPEAT block to perform a parameter sweep 76
4.18 Using the YIELD statement to identify groups for statistics collection . 77
4.19 ESDL definition for (30 + 20) -ES . 79
4.20 Pseudocode for generating ES individuals 79
4.21 Pseudocode for ES mutation . 80

LIST OF CODE LISTINGS xx

4.22 Single-step mutation for EP as pseudocode 80
4.23 Tournament selection as pseudocode 81
4.24 Integer-valued individual generation as pseudocode 81
4.25 ESDL definition for EP . 81
4.26 Binary tournament selector (with replacement) as pseudocode 82
4.27 Single-point crossover operator as pseudocode 82
4.28 Point mutation operator as pseudocode 83
4.29 ESDL definition for GA . 83
4.30 ESDL definition for DE . 84
4.31 Two example GP nodes specified as Python classes 86
4.32 Evaluator for comparing against x3 + x2 + x+ 1, specified in Python 86
4.33 random_program generator specified in Python 86
4.34 ESDL definition for GP . 87
4.35 ESDL definition for SSGA . 87
4.36 Generator definition for PSO as pseudocode 89
4.37 ESDL definition for PSO . 89

5.1 Partial GA configuration for framework e (ECJ) 95
5.2 ESDL system definition with dependencies between stores and functions103
5.3 Example generator, operator, evaluator and function invocations in

ESDL . 106
5.4 Use of a joiner that can handle a variable number of sources 108
5.5 Generator invocations in ESDL . 109
5.6 Evaluator propagation in ESDL . 109
5.7 Example ESDL code . 111
5.8 Token stream created for Listing 5.7 112
5.9 Parse tree created for Listing 5.7 . 113
5.10 Textual representation of the execution model for Listing 5.7 115

6.1 ESDL description of the hypothetical Angry Mob Optimisation algo-
rithm . 125

6.2 Pseudocode for the hypothetical find_mobs operator 126
6.3 ESDL description derived from the text in Story 1 130
6.4 Python example of Order Crossover 134
6.5 ESDL description of Affenzeller 2 . 135
6.6 esec operator implemented in Python 138
6.7 Initialisation of the esec blackboard in Python 139
6.8 Python code generated for a FROM-SELECT statement 141
6.9 Python code generated for a function call 141
6.10 esec configuration file for GA . 144

LIST OF CODE LISTINGS xxi

C.1 Defining a FluentSystem in Python . 235
C.2 Example syntax tree generated by the AST class 238
C.3 emit function signature . 239
C.4 Python code generated for named and repeated blocks 240
C.5 Python code generated for unoptimised and optimised stores 241
C.6 Example of expanding a ˋpy pragma into Python code 242
C.7 Python code generated with profiling enabled 243
C.8 Example ESDL system that includes most compilable constructs . . . 244
C.9 Unoptimised Python code generated by esdlc for Listing C.8 245
C.10 Optimised Python code generated by esdlc for Listing C.8 247

D.1 Array addition in C++ AMP . 252
D.2 Examples of the C++ auto type declaration 254
D.3 Interface of the group class for cppamp 256
D.4 Interfaces for fixed- and variable-length individuals 256
D.5 C++ code generated for a FROM-SELECT statement 257
D.6 Specification comments for cppamp extensions 258
D.7 Interface for cppamp operators . 259
D.8 C++ code that would be required for Listing D.5 without template

type inference . 260
D.9 Outline of a sphere evaluator implementation 260
D.10 C++ code generated for EVALUATE-USING statements 260
D.11 Normal output from a cppamp executable 262
D.12 CSV output from a cppamp executable 262
D.13 Verbose output from a cppamp executable 262
D.14 Verbose CSV output from a cppamp executable 263
D.15 Examples of C++ code generated for variables 264
D.16 Examples of C++ code generated for groups 264
D.17 Generated C++ code for a store operation 265
D.18 C++ code generated by cppamp for Listing C.8 266

E.1 Lists and iterators in Python . 273
E.2 Dynamic typing and name binding in Python 273
E.3 Dictionaries and first-class types and functions in Python 274
E.4 Dynamic compilation and invocation in Python 274
E.5 Python code to run an entire experiment 275
E.6 Configuration syntax from the Experiment class 278
E.7 Configuration syntax for the Landscape, Real and Stabilising classes . 279
E.8 Merged configuration syntax for the Stabilising landscape 280

LIST OF CODE LISTINGS xxii

E.9 Example of providing external Python functions in a configuration
dictionary . 284

1

Chapter 1

Introduction

1.1 Motivation
When presenting an Evolutionary Algorithm (EA) in any form, whether as an ap-
proach to solving a real-world problem, the subject of a benchmarking or parameter
tuning algorithm, a topic in a classroom or the result of improving an existing EA,
a number of identifiable topics recur. Each publication has an overview, however
brief, of what EAs are and what they are used for. Relevant aspects of related
algorithms and prior work must be repeated or cited. A verification implementation
is usually created, often analysed, occasionally mentioned, sometimes described and
rarely shared. Finally, analysis and attribution of causality is used to prove the
point that is being made.

While practically every publication on EAs reads like a success story, attempting
to reproduce the results often presents considerable difficulty. With the highly seg-
mented history of the field—most algorithms claim ancestry to Genetic Algorithms
(GA), Evolution Strategies (ES), Evolutionary Programming (EP) or Genetic Pro-
gramming (GP)—a range of presumptions surround the terminology used, neces-
sitating detailed background information in each paper and precise definitions of
terms such as “fitness,” “population” or “proportional selection.” When definitions
for these terms are obtained from another work, reproduction becomes a case of
citation tracing, as well as identifying any random errors introduced when passing
from one author to the next (see: mutation). Provided sufficiently precise and ro-
bust definitions are available, there is a chance that a reader might fully understand
what the author intended.

Given the difficulties in performing theoretical analysis of algorithms that are
fundamentally driven by entropy, it is no surprise that empirical evidence is used
to support most claims. Independent verification of theoretical works can be based
on a single publication, provided all assumptions are valid or otherwise trusted.
Verification of experimental results, however, requires a true reproduction of the

CHAPTER 1. INTRODUCTION 2

experiment. Such a reproduction is only possible where adequate information about
the original experiment has been provided, and despite being included as a review
criterion a quick scan of conference proceedings immediately reveals that this is
not common practice. While most work includes experimental results, few also
include details of the experiment beyond the hardware or programming language
used. Publications based on previously used and validated experimental (in this
case, software) frameworks are a minority.

Results analysis often lacks robustness. So many aspects of an EA contribute to
its quality that full parameter sweeps are impractical. At best, parameter variations
are controlled within an experiment in order to prove (or disprove) a hypothesis. At
worst, a single instance of an experiment is cited as ‘the result,’ with an implica-
tion of representativeness. The historical segregation of EAs leads to performance
results being associated with the entire algorithm rather than the combination of
components involved, the problem being evaluated and the occasional implementa-
tion error.

The motivation for this thesis is that the understanding of EAs appears to be
so heavily based in its multiple historical origins that research, design and imple-
mentation approaches mistakenly prioritise entire algorithms above the components
and operators of which they are constituted. None of the originating algorithms
were intended for their modern application as general-purpose optimisers—each has
a specific purpose or class of target problems and any success outside of these should
be attributed to luck more than design. However, each of these algorithms are in-
stances of a general search method that can be used to design a ‘new’ algorithm class
for optimisation that is based on, but not limited by, the last 50 years of research.

With a well-defined class of EAs, the fundamental components can be abstracted.
Abstraction allows more targeted research efforts through a simpler conceptualisa-
tion of contributory components, direct composition of algorithms based on compo-
nent suitability, unambiguous descriptions of algorithms and flexible implementation
strategies. In short, everyone involved in the EC field, whether they are interested
in theoretical validation, experimental analysis or software development concerns,
can benefit from a clear description and shared understanding of EAs.

CHAPTER 1. INTRODUCTION 3

1.2 Research Statement
The central hypothesis of this research is:

Evolutionary Algorithms are a single class of algorithms that no
longer need the separation resulting from their distinct origins,
and a unified model and approach will aid the understanding,
development, implementation and presentation of these
algorithms.

The following questions are designed to directly address the contentions of this
hypothesis and are used throughout this work to explicitly identify the relevance of
each contribution.

1. Are there problems with how EAs are designed, implemented and
communicated, and if so, how do these affect practitioners and re-
searchers? The contention that EAs should “no longer” adhere to the dis-
tinctions arising from multiple origins requires greater justification than the
‘purity’ of a unified approach. Identifying the problems that arise as a result
of separate historical origins provides support for a different approach and a
set of criteria by which the alternative may be assessed.

2. What, fundamentally, is an EA? Notably absent from the field is a strong
understanding of what constitutes an EA, with most definitions using examples
rather than independent descriptions. Formulating an EA definition that is
separate from EA instances is an essential task.

3. Given answers to questions 1 and 2, how should the design, implemen-
tation and sharing of EAs be approached? An EA definition provides
the opportunity to clearly identify the interactions, contracts and behaviours
of the components and suggest ways in which they can be used, combined and
described. The intent is not to prescribe a ‘one-size-fits-all’ piece of software,
but to identify effective approaches and guidance for working with EAs.

4. Does this model prevent existing algorithms from being described?
Despite the absence of a well-defined algorithm class, much useful research has
been performed with EAs. The definition and model representing a general
EA must be retrospectively applicable to prior work.

5. Does this model solve the problems found by Question 1? The prob-
lems identified earlier are suitable assessment criteria for the new model. While
complete solutions are not strictly required, a failure to significantly mitigate
known issues would suggest that the proposed approach is not beneficial.

CHAPTER 1. INTRODUCTION 4

1.3 Contributions
The specific research contributions made are as follows:

1. A conceptual model of EAs. This model defines four necessary elements, in-
dividuals, groups, operators and streams, including boundary contracts and
composition restrictions. Example compositions based on well-known algo-
rithms and a ‘standard library’ of components is provided.

2. Evolutionary System Definition Language (ESDL), a domain-specific descrip-
tion language for EAs. ESDL clearly describes the composition of an algo-
rithm from the components of the conceptual model in a simple language that
is specifically designed for EAs, allowing for concise, structured presentation
of new or existing algorithms.

3. An execution model of ESDL. This model is distinct from the conceptual model
and describes the interpretation and evaluation of an EA. The execution model
assists developers in reliably converting ESDL systems to executable code, or
producing compilers that do so automatically, and identifies opportunities for
extensibility and exploitation of future developments.

The following contributions are software packages for directly supporting future
work in the field:

1. esec, a software framework for EC experimentation. Based on the concep-
tual EA model, esec executes ESDL using its library of operators for rapid
prototyping and implementation of algorithms.

2. esdlc, a prototype multi-targeting compiler for ESDL. Currently, esdlc con-
verts ESDL systems into Python code for use with esec and compilable C++

code for use with C++ AMP and heterogeneous hardware platforms.

1.4 Structure
This dissertation is structured across five chapters, each of which builds significantly
on the work in earlier ones. The traditional literature review appears distributed
throughout each chapter due to the highly diverse range of topics covered; the
relevance of work related to later chapters may not be obvious without the work of
earlier chapters. The questions from Section 1.2 are each specifically addressed by
one or more chapters.

Chapter 2, Unification, shows how the segmentation by algorithm of the EC
field came about, demonstrates how it is detrimental to research, design and imple-
mentation, and introduces an application-based, rather than biologically inspired,
foundation of EAs. Questions 1 and 2 are addressed by this chapter.

Chapter 3, Model, takes the derivation from the preceding chapter and identifies
the major component types and an architecture that may be used to represent,

CHAPTER 1. INTRODUCTION 5

describe and discuss general evolutionary algorithms. Questions 2–4 are addressed
by this chapter.

Chapter 4, ESDL, specifies a domain-specific composition language for the model
in Chapter 3, providing a textual format for unambiguous description of algorithms.
Questions 3 and 4 are addressed by this chapter and Question 5 is partially ad-
dressed.

Chapter 5, Execution, reviews existing EA software, identifies various architec-
tural decisions and defines the architecture and execution model for ESDL. Questions
3 and 5 are addressed by this chapter.

Chapter 6, Application, describes the use of ESDL in supporting algorithm de-
sign, implementation and presentation, shows that existing algorithms are supported
and that the issues raised in Chapter 2 are mitigated. Questions 3–5 are addressed
by this chapter.

Chapter 7, Conclusions, reviews the goals from Section 1.2 and highlights how
each was addressed throughout this work. Limitations of the proposed approach are
discussed and potential further research is suggested.

All of the source code created for this work and any errata and addendums are
available from http://stevedower.id.au/thesis.

1.5 Publications
The following peer-reviewed conference papers were based on the work conducted
for this thesis.

• S. Dower and C. J. Woodward, “ESDL: a simple description language for
population-based evolutionary computation,” in Proceedings of the 13th An-
nual Genetic and Evolutionary Computation Conference, GECCO 2011, ACM,
2011, pp. 1045–1052.

• S. Dower, “Automatic implementation of evolutionary algorithms on GPUs
using ESDL,” in Proceedings of the IEEE Congress on Evolutionary Compu-
tation, CEC 2012, IEEE, 2012, pp. 3356–3363.

http://stevedower.id.au/thesis

CHAPTER 1. INTRODUCTION 6

7

Chapter 2

Unification

The field of Evolutionary Computation arose as the conglomeration of
a range of techniques and algorithms for more efficient search. Among
these are three independently developed algorithms that are considered
representative of Evolutionary Algorithms (EAs): Evolution Strategies
(ES), Evolutionary Programming (EP) and Genetic Algorithms (GA).
Practitioners, teachers, students, researchers and others involved in the
EC field are likely to be aware of, or familiar with, these algorithms.
and much time has been invested in testing, tuning, adapting and oth-
erwise trying to improve the ability of each of these algorithms to solve
an ever-wider range of problems. Many of these efforts follow the tradi-
tional separation between the three algorithms, but artificially treating
ES, EP and GA—and other algorithms such as Genetic Programming
and Differential Evolution—as entirely distinct is unnecessary and has
the potential to stifle innovation and collaboration. Unifying ES, EP and
GA into variations of a general class of algorithm provides many bene-
fits when attempting to understand, explain, implement, test and share
designs and results. Enough common characteristics exist that publica-
tions often begin by generalising to a unified model of EAs that suits the
intended purpose, though not necessarily consistently with other gener-
alisations. This chapter illustrates the issues caused by the current state
of segregation, and derives a general class of EAs based on an application
to optimisation.

2.1 Originating Algorithms
Historically, the class of EAs derives from three algorithms: Evolution Strategies
(ES), Evolutionary Programming (EP) and Genetic Algorithms (GA) [33]. Each
of these was developed independently for different applications, but share sufficient

CHAPTER 2. UNIFICATION 8

commonality to be recognisable as separate instantiations of a single class of algo-
rithm.

This section reviews the history and background of each of these algorithms,
providing the necessary context to observe how the field currently works with EAs,
to observe the conflicts that result from the implicit segregation between algorithms
(Section 2.2) and to identify the fundamental parts of an EA that are independent
of particular instances (Section 2.3).

2.1.1 Evolution Strategies
In 1971, Ingo Rechenberg published his thesis Evolutionsstrategie, Optimierung
technischer Systeme nach Prinzipien der biologischen Evolution [78],1 describing a
manual iterative algorithm for numeric optimisation. The technique was developed
during the 1960s, in collaboration with Hans-Paul Schwefel at Technische Univer-
sität Berlin (Berlin Institute of Technology) for application to fluid dynamics design
problems. Early applications sought to optimise flow through a shaped pipe [56],
minimise the drag over a joint plate [77] and improve the structure of a two-phase
flashing nozzle [81]. Computer simulation was not readily available and theoreti-
cal designs required construction and experimental validation. For many problems,
theoretical analysis was (and still is) insufficient to determine design changes that
lead to improved performance; ES was designed for problems of this nature.

As an incremental optimisation algorithm, ES seeks to make small improvements
to a candidate solution over many repeated efforts. The approach attempts to bal-
ance two alternate approaches to design: deterministically finding a better solution
(that is, selecting a change based on knowing the result in advance) and making
purely random changes until a ‘good enough’2 solution is found. As a compro-
mise, ES uses random changes but discards those that are regressive. These random
changes are created using values selected from a Gaussian probability distribution,
such as that shown in Figure 2.1, based on the observation that small variations in
nature are more frequently viable (less destructive) than large variations. A pre-
sumption exists that the Gaussian distribution reflects variations to an underlying
genetic sequence [33], though this interpretation has little impact on the design or
application of ES and the implications of a biological inspiration could alternatively
be justified by showing a correlation between the magnitude of a variation and the
significance of the effect.

1“Evolution Strategy, Optimisation of Technical Systems according to the Principles of Biolog-
ical Evolution.”

2The concept of a ‘good enough’ solution in engineering is well defined, typically as a minimal (or
maximal) measurement multiplied by a factor of safety. Other applications have more subjective
metrics for ‘good enough.’

CHAPTER 2. UNIFICATION 9

P
ro

b
a
b

ili
ty

Magnitude of variation

-∞ 0 +∞

Figure 2.1: A Gaussian probability distribution, also known as a normal distribution.

Around the same time as Rechenberg’s first ES publication in 1965, Schwefel
generalised the algorithm to operate on vectors of real values and performed the
first computer simulations to compare different versions of ES [80]. The algorithm
at this point derived one variation from one candidate solution, which was either
retained or discarded based on the presence or absence of any observed improve-
ment. Rechenberg extended the algorithm to keep a pool of candidate solutions and
generate a single variation based on multiple random selections from the pool [78].
Each selected “parent” contributed some components to the variation before the
random values were added, with the worst solution in the pool being discarded if
the variation resulted in an improvement [8].

Schwefel [83] later extended the algorithm to create multiple solution variations
each iteration, also introducing the modern (µ+ λ) -ES and (µ, λ) -ES notations,
indicating the size of the parent pool (µ) and the number of variations (λ). Using
one parent and creating one variation, a (1 + 1) -ES is equivalent to the original
algorithm, while setting µ to a value greater than one matches Rechenberg’s exten-
sion [78]. With both µ > 1 and λ > 1, significant design freedom is introduced,
allowing the algorithm to deviate dramatically from the original structure.

The introduction of multiple parents and offspring creates the need for mech-
anisms to initialise the pool of solutions, reproduce or select parents, vary the
offspring, reduce the number of variations and replace either some parent (for a
(µ+ λ) -ES) or all parents (for a (µ, λ) -ES). The approaches used for any or all
of these aspects affect the behaviour and suitability of the algorithm for different
problems; there is no known configuration suitable for all possible problems, and it
is generally accepted that such a configuration does not exist (the “no free lunch”
theorems [97]).

CHAPTER 2. UNIFICATION 10

&& 0.6, 0.8, 0.8 &
&& 0.1, 0.2, 1.1 &
&& 0.8, 0.7, 1.0 &
&& 0.3, 0.2, 0.4 &

&& 0.1, 0.3, 0.5 &
&& 0.4, 0.2, 0.0 &
&& 0.7, 0.8, 0.9 &
&& 0.0, 0.5, 1.0 &

&& 0.1, 0.3, 0.5 &
&& 0.4, 0.2, 0.0 &

&& 0.7, 0.8, 0.9 &
&& 0.0, 0.5, 1.0 &
&& 0.1, 0.3, 0.5 &
&& 0.4, 0.2, 0.0 &
&& 0.7, 0.8, 0.9 &
&& 0.0, 0.5, 1.0 &
&& 0.1, 0.3, 0.5 &

&& 0.4, 0.2, 0.0 &

&& 0.2, 0.3, 0.8 &
&& 0.1, 0.3, 0.1 &

&& 0.6, 0.8, 0.8 &
&& 0.1, 0.2, 1.1 &
&& 0.7, 0.2, 0.4 &
&& 0.3, 0.3, 0.9 &
&& 0.8, 0.7, 1.0 &
&& 0.1, 0.2, 0.9 &
&& 0.3, 0.2, 0.4 &

&& 0.3, 0.5, 0.1 &

Solution Pool Solution Pool

Parents Offspring

R
e
p

e
ti
ti
o

n

V
a
ri
a
ti
o

n

R
e
d

u
ct

io
n

Figure 2.2: One iteration of a (4, 10) -ES that reuses parents to create a larger pool of solutions.

As an illustrative example, consider a (4, 10) -ES using solutions represented by
real-valued vectors with three components. At the beginning of each iteration, there
will be a pool of four potential solutions. Initially, these are created by randomly
selecting values between 0.0 and 1.0, but later they will be the result of the ES
algorithm. In order to produce 10 offspring from these four parents, the group of
four is repeated until 10 are obtained. (Direct repetition is one of a number of
choices for obtaining a sufficiently sized group, but it is a common choice for ES
with µ < λ.) For each vector in the group of parents, an offspring is created by
adding a random value to each component. This value is selected from a normal
distribution with mean of zero and a variance of 0.25, giving an approximate 95 per
cent likelihood of the value being between −1.0 and 1.0. Each of the ten variations
is tested and the best four are retained. This process is illustrated by Figure 2.2.

In this example, the algorithm may be modified to achieve various performance
characteristics. For example, parents may be reselected with a uniform probability or
proportionally to their quality, rather than simply repeating each in turn. The scale
of the random variation may be reduced or increased independently from the width
of the distribution, resulting in more changes overall or increasing the likelihood
of larger changes. Distributions other than the Gaussian may be used, since the
existence of random variations is sufficient for the algorithm to make progress. A
hard limit may be applied to vector components, preventing them from exceeding
certain bounds, and these limits may be different for each component. Reducing the
ten variations back to the pool of four may be deterministic, as in the example, or
may be selected with some probability related to their quality. There are incalculable
combinations of parameters that may be used.

A common extension to ES is the use of parameter adaptation, particularly of
the random number distribution. Rather than fixing the standard deviation, it
is allowed to vary each iteration for every solution at once, each individually or
each component of a solution. Rechenberg demonstrated the ability to calculate an

CHAPTER 2. UNIFICATION 11

line of equal probability density to place an offspring

(a) (b)

Figure 2.3: Per-component distributions (a) without and (b) with angles, to allow non-
orthogonal variations (adapted from [8]).

optimum variance at each step for a given problem and a particular parent [78],
though the use of self-adaptive parameters is generally preferred for ES [7, 8, 83].

Varying levels of complexity in parameter adaptation have been used with suc-
cess. The simplest schemes scale the distribution variance based on the rate of
successful variations. Those that are more complex introduce a “strategy parame-
ter,” which specifies the variance for each component. Values for this parameter are
associated with the individuals to which they are applied and varied stochastically,
the premise being that ‘good’ variances will produce successful variations and avoid
elimination. Other approaches include rotated or correlated mutations, allowing
strategy parameters to direct variations in a direction not orthogonal to the vector
components, for example, as in Figure 2.3. [8, 83]

Ignoring the range of potential variations, a general ES consists of three stages:
an initial collection of n real-valued vectors is either repeated or combined into a set
of parents; each parent is varied to produce a child; and the set of children, or the
union of children with the original set, is reduced to the best n solutions. The real-
valued vector representation is considered canonical, though the use of alternative
solution types with ES is also possible.

2.1.2 Evolutionary Programming
Evolutionary Programming (EP) was one of the earliest EAs, published in 1966 by
Lawrence Fogel in Artificial intelligence through simulated evolution [34]. The intent
was to replicate intelligent behaviour in a machine so that it could predict its en-
vironment and react appropriately to achieve a specific goal. In early experiments,
the environment was a sequence of symbols from a finite set and finite-state ma-

CHAPTER 2. UNIFICATION 12

B

A C

1/𝛽

0/𝛾

0/𝛽

1/𝛼

1/𝛾

0/𝛽

Figure 2.4: A finite-state machine (adapted from [33]).

chines (FSMs) were used to determine the reaction to each new symbol. Finite-state
machines are intuitively suitable for such a task due to the memory implicit in each
action’s dependence on the current state. For example, the finite-state machine in
Figure 2.4 consists of states A, B and C and exists in an environment with symbols
0 and 1; each response depends on the current state and is one of α, β or γ. Such
a machine could be evaluated for quality by providing a sequence of symbols and
measuring its predictive capability. While any particular measure depends on the
specific type of symbol, a machine with better expectation of future changes in the
environment generally produces a better “payoff.” [33]

A finite-state machine can be designed manually for well-understood environ-
ments, in the same way that ES is unnecessary in the presence of a reliable theoret-
ical model. However, for complex behaviours with many interacting parameters, an
automatic method of design discovery greatly improves the range of applicability.
Fogel’s method used iterative variation of a collection of different machines. Each
machine was changed using one or more out of five possible mutations: changing an
output symbol (α, β or γ from Figure 2.4), changing a state transition, adding a
state, deleting a state or changing the initial state. Some mutations are not valid
for machines with only one state, while those that were had a uniform probability
of application. Creating one variation for each machine produced a total of twice
the original number; discarding the worse performing fifty per cent maintained a
constant count over multiple iterations.

One early experiment sought to predict whether a natural number was prime,
based on the prime-ness of all preceding natural numbers [33]. For this experiment,
the environment was a sequence [0, 1, 1, 0, 1, 0, 1, . . .] where 1 represented
that the index was a prime number (in the short sequence shown, two, three, five

CHAPTER 2. UNIFICATION 13

and seven). The output symbol would be either zero or one with the payoff being
the number of correct predictions for the sequence up to a predetermined number.
A size penalty was applied to prevent the generation of machines with as many
states as there were symbols in the environment; keeping a full list of the correct
answers results in good historical performance but poor predictive ability. Machines
generated using EP on the first two hundred symbols (that is, numbers one through
two hundred inclusive) predicted 78 per cent of the prime numbers correctly with
only four states. After adjusting the payoff calculation to better reward prediction
of rare events (for large ranges, always predicting non-prime gives a high success
rate) the machines correctly predicted ninety-five of the first hundred primes, with
104 false alarms up to the number 547. Since the algorithm for primes cannot be
represented by a finite-state machine, such a result is considered remarkable.

From the late 1980s, EP was adapted to be applicable to a variety of problems.
Representations were not restricted to finite-state machines but specifically designed
for particular problems, though the approach of producing a single variation for
each solution was normally retained. Because changing representation necessitates
changing the variation operation, EP has performed well on a range of problems,
perhaps the strongest evidence that the other ‘standard’ EAs specify algorithms
that are too constrained for general application. When using a real-valued vector
representation, EP appears very similar to ES, though the latter deemphasises the
importance of parent-child knowledge transfer.

A general EP algorithm consists of two steps: for each solution create one vari-
ation, and then reduce the total pool to the original size keeping better solutions.
Variation schemes are representation-dependent and must be designed and tuned
for a specific problem class. Such schemes often include steps to combine multiple
solutions, as in ES, as well as making purely random changes. The reduction mecha-
nism is independent of the problem provided a quality measurement is well defined,
and selecting ‘survivors’ probabilistically rather than deterministically provides im-
proved performance over keeping exclusively better solutions [39].

2.1.3 Genetic Algorithms
Genetic Algorithms (GA) is arguably the most influential of the three originating
algorithms, particularly in terms of the terminology now in common use through-
out the field. The earliest description appears to be Alex Fraser’s stochastic digital
simulation of nature in 1957 [36, 37], though the use of the technique as a problem
solver was recognised by Hans-Joachim Bremermann [11] and formalised by John
Holland throughout the 1960s and 1970s [46, 47]. Kenneth De Jong published his
PhD thesis under the supervision of Holland in 1975, focusing on the “genetic adap-
tive model’s” use in, and relevance to, search and optimisation [16]. The general

CHAPTER 2. UNIFICATION 14

adaptation framework used by Holland and De Jong supports ES and EP as well
as other algorithms, though the genetic adaptive plan that later became GA is the
more widely known contribution.

Central to Holland’s formulation of adaption is the notion of competition between
alternative solutions to a problem. In order to have competition, some comparable
measure of performance is necessary; this measure needs to be a function of the solu-
tion and the environment or problem to which it is applied. Adaptation is a strategy
for using known solutions to derive some information about the environment, and
then using that information to generate better performing solutions.

GA is a strategy based on a simulation of a population of biological organisms,
modelled at the genetic level. A single time step in the algorithm represents one
generation in this population, the time in which organisms mate and produce a re-
placement group of individuals. In contrast to ES and EP, variations are typically
guaranteed to survive into the next generation; the quality of an individual deter-
mines the likelihood of selection as a parent, rather than its immediate survival. [16]

Solutions are represented as strings of genes, where each gene can take one of a
predefined set of values or “alleles.” The number of genes and the values each may
take are determined by the problem, with a preference for more genes of lower arity
and hence a larger search space. Mapping from genes to an individual’s ‘physical’
manifestation in the problem domain must be explicitly defined, although this can be
subsumed into the solution evaluation and comparison. Canonical GA uses binary
strings—binary being the simplest useful gene—and interprets subsequences of bits
to determine the value represented. Unlike ES, the underlying genetic representation
in GA is explicit, rather than assumed and modelled through biased random number
generation.

“Crossover” is used as the main source of variation; the purely random changes,
“mutation,” as used in ES and EP are relegated to a “background operator” [16].
As in nature, the genetic information present in a particular generation is predomi-
nantly a mixture of what existed in the previous generation. The crossover operator
emulates this by exchanging randomly selected subsequences of two individuals to
create one or two offspring, as shown in Figure 2.5. Many different approaches
to crossover exist with varying numbers of parents, numbers of “crossover points,”
blending or additive behaviours, segment reordering and others described through-
out the literature [7, 16, 46].

Crossover alone is the unable to introduce gene values that do not exist in the
current population. Values may disappear due to selection pressures or may never
have existed in the initial population. To mitigate this limitation, a very low fre-
quency mutation operator is applied. This operator is intended to maintain a high
similarity between the individual and its mutant by randomly replacing a small

CHAPTER 2. UNIFICATION 15

Parent 1

Parent 2 Child 2

Child 1

Crossover

Parent 1

Parent 2

Child
Crossover

(a)

(b)

Figure 2.5: Diagrammatic representation of crossover in GA creating (a) one or (b) two new
offspring.

number of genes with new values (assuming the decoding method used assigns an
equivalent weight to each gene regardless of position [7]). Early suggestions ranged
between a 0.1 to 1 per cent chance of mutating any particular individual, compared
to a very high and often guaranteed likelihood of performing crossover [16, 43, 46].

Repeating these two variation operations provides a computationally efficient
method for sampling points within a large search space. However, a sampling plan
without any pressure towards creating better solutions is not useful. The pressure
in GA is derived from deliberately biasing the selection of parents, applying the
observation that organisms less suited to their environment are less likely to repro-
duce. Suitability in GA is called “fitness” and is typically a positive real number
with larger numbers associated with fitter individuals. Fitness values are used when
selecting to change the distribution of a population to include a higher proportion
of fit individuals.

Multiple approaches to selection in GA have been established. The original ap-
proach was to normalise fitness values and treat them as selection probabilities,
known as fitness-proportional selection [46]. Normalisation requires positive fitness
values where more positive represents more fit (“maximising”), which is why this
convention is preferred. Since scaling and shifting may be unsuitable for achieving
this constraint, other selection techniques use a probability proportional to the num-
ber of less fit individuals; operators that compare to all other individuals are known
as rank-proportional, while those that compare to a random subset are tournament
selectors [7].

A standard GA generation begins with the selection of parents from the existing
population. Depending on the crossover operation, there are either as many parents

CHAPTER 2. UNIFICATION 16

as members of the population or double the amount. Typically 90 to 100 per cent of
the parents are combined using crossover and mutation is then applied to the new
individuals to produce the next population. In contrast to ES and EP, the reduction
stage in GA is at the beginning of the cycle; as long as the number of offspring does
not exceed the desired population size, there is no need for a final reduction step.
Some forms of GA retain a subset of the original population, bypassing variation
and allowing the individuals to compete with the newly created ones; algorithms
retaining few of the most-fit individuals are said to be “elitist,” while those that
keep most or all are “overlapping” or “steady-state” algorithms, depending on the
design [7].

2.1.4 Other Algorithms
As well as those in the previous sections, there are algorithms that were either de-
veloped as part of or later included into the EC field. Genetic Programming (GP),
popularised by John Koza [54], bears great similarity to GA applied to a differ-
ent solution representation; the names and intuitive behaviours of the operators
used are identical, despite differences in implementation. Similarly, algorithms such
as Grammatical Evolution [70], Cartesian Genetic Programming [65] and Linear
Genetic Programming [10] use operators comparable to GA’s but with different rep-
resentations. Differential Evolution (DE) [76, 89] uses a combination of selection,
crossover, mutation and elitism to target real-valued optimisation problems. Al-
gorithms such as CCGA [75] and more than twenty others [3] consist of multiple
collaborating (either coevolutionary or parallel) instances of other algorithms, com-
monly variations of GA. The area of swarm intelligence includes algorithms such as
Ant Colony Optimisation [24] and Particle Swarm Optimisation (PSO) [52] which,
while usually not considered to be EAs, have similar population-based iterative
structures and are often applied to similar problems.

This list is far from exhaustive; there are hundreds of EC algorithms, each with
a distinct name, body of research and set of problems for which they are better
suited. Inspiration for these algorithms can typically be traced back to one of
ES, EP, GA or another natural metaphor. Unfortunately, these origins are often
used discriminatorily, with research work frequently able to be applied to a broader
category of algorithms than those at which it is explicitly targeted. These issues
also arise when designs are linked to one of ES, EP or GA; the following section
discusses the implications of this in detail.

2.2 Algorithm Cliques
Despite the similarities, ES, EP and GA were considered distinct algorithms for
many decades with separate conferences and journals. Discoveries, experimental

CHAPTER 2. UNIFICATION 17

results, design concepts and software implementations often reinforced the assump-
tion that their independent discovery implied some incompatibility between these
algorithms. Despite amalgamation of the field into EC, attempts to treat ES, EP
and GA as variations of a single class of algorithm have met with limited success
and much work in the field continues to identify as relating to only one of them.

This section considers the issues that result from the assumption of incompatibil-
ity between algorithms in the context of research and experimental work, algorithm
design and development, and software implementations. Works cited as displaying
issues are intended as illustrative rather than personal criticism; they are examples
of publications that support the view that EAs are not efficiently or unambiguously
described as a derivation of another algorithm such as ES, EP or GA.

2.2.1 Segregation in Research
Since their inception, many improved versions of the three originating algorithms
have been created, implemented, published and tuned for various applications. How-
ever, much of this work was originally developed for only one of the algorithms and
later independently duplicated for the others, particularly throughout the 1980s
when function optimisation became a more important focus than biomimicry. Only
since the early 1990s have ES, EP and GA really benefited from sharing in each
other’s work. Thorough histories of EAs through this period can be found in [19]
and [32].

One indicator of the growing collaboration between these algorithms comes from
conference amalgamations. Throughout the 1990s, conferences such as the Interna-
tional Conference on Genetic Algorithms, Evolutionary Programming and Genetic
Programming merged into broader EC conferences, such as the Genetic and Evo-
lutionary Computation Conference (GECCO) and the Congress on Evolutionary
Computation (CEC). This indicates a level of acceptance that the algorithms are
fundamentally related; however, even within these conferences, contributions are
streamed based on algorithm ‘ancestry.’ While streaming by algorithm is a conve-
nient and often orthogonal categorisation, it is not conducive to exposing ideas and
developments that span multiple applications. Worse, such streaming encourages
new research to target a specific algorithm, which reinforces the orthogonality of
the category.

Despite the practical separation, there is recognition of the distinction being
purely theoretical. Fogel identifies that ES, EP and GA have blended to the point
where the “practical utility” of the terms is minimal [33], while De Jong has been
actively encouraging unification for decades [18–21]. However, despite an apparent
acceptance of the central underlying algorithm class, the tendency to adhere to his-
torical boundaries is still pervasive within the field. For example, the predisposition

CHAPTER 2. UNIFICATION 18

to select an entire algorithm for a problem, particularly by those not familiar with
the field, is an ongoing effect of the strong identity of the original algorithms [20,53].
This may simply result from an unawareness of the ability to tailor an algorithm to
the problem being targeted, or the plausible—though incorrect—assumption that
EAs have simple and universal performance characteristics, in the same way that
deterministic algorithms are often compared using big-O expressions [66].

Because each algorithm supports so many parameter combinations, as well as
canonical descriptions implicitly being targeted to particular problem characteris-
tics, simply deciding to ‘use a GA’ is practically always deciding to use an inefficient
approach. Unfortunately, the entry point to the EC field is typically through a par-
ticular algorithm, due to the lack of any structured, problem-centric approach to
design [20]. Attempting to avoid this issue, introductory textbooks by Eiben and
Smith [31] and De Jong [19] illustrate and derive EAs from common features such as
reproduction, crossover and mutation, and subsequently describe specific algorithms
in terms of these.

An improved situation for the EC field would see less emphasis on algorithms and
encourage the combination of components based on an understanding of their effect
on the search. Much work has been conducted into the effects of the operators of
particular algorithms, such as recombination [66, 71, 86], though many experiments
simply vary an operator within a particular algorithm rather than evaluating its
effectiveness or behaviour independently. The resulting observations then describe
a feature of an algorithm on a given problem without necessarily controlling for
other components or problem characteristics.

The problem-centric view of design has gained traction in the field, observable
in De Jong’s “unified approach” [19], parameter control and tuning work (both
independently and collaboratively) by Eiben and Smit [29,84], Moraglio’s efforts to
design problem-specific crossover operators [66], Aydt et al.’s algorithm-independent
representation [6] and numerous others. Reducing the importance of the entire
algorithm in favour of general theories, problem characterisation and structured
operator design provides a more robust scientific platform on which to work and
allows research to better target specific hypotheses and outcomes.

2.2.2 Segregation in Design
The preoccupation with distinct algorithms is reflected in the development of deriva-
tions of existing algorithms. While inspiration is useful and necessary to the creation
of new approaches, many novel ideas suffer from tight coupling to the early descrip-
tions of one of ES, EP or GA. Rank-based selection methods (as opposed to those
based on absolute or scaled fitness) were unappreciated within GA research for
years because they appeared to be inconsistent with the existing schema theorem,

CHAPTER 2. UNIFICATION 19

despite being standard for ES and EP [7]. While taking inspiration from existing
algorithms is entirely acceptable, a valid concern can be raised about the extent to
which unnecessary constraints are retained.

For example, canonical GA necessitates that fitness is represented by a single real
value. Research into multi-objective problems (such as [79]) has shown that this is
undesirable, and while many actively justify using this convention, its use by default
persists even into recent algorithm specifications [59, 67]. A simple numeric fitness
can be overly limiting, and a more flexible definition provides a better abstraction
in the general case. For specific theoretical analyses, such as [66], explicitly defining
fitness values as real numbers may be necessary or convenient, though the application
of such analysis is then restricted to those applications where the constraint is valid.
Many useful applications require higher complexity fitness, but when a designer
believes they are limited to a single real value, they will fall back on a clumsy device
such as weighted sums or a simplified model of the problem.

A greater issue than fitness representation is the residual structure of another
algorithm. Using crossover followed by mutation or representing solutions in binary
just because GA was the inspiration is lazy design—copying, rather than inspir-
ing. Selecting a good representation requires an understanding of the nature of the
problem being solved and selecting good operators further depends on the chosen
representation. Assumptions proven for a different type of problem cannot necessar-
ily be transferred to another application [66]. The no free lunch theorems support
this: in order to achieve better than average performance on a particular problem,
an algorithm must be specialised for that problem [97]. The general lesson is that a
representation that is used by one algorithm, no matter how successful, cannot be
seen as an endorsement of that representation for all problems.

Comparisons to the originating algorithms risk implying a greater association
than may be intended. For example, early presentations of PSO state that “the
adjustment … by the particle swarm optimizer is conceptually similar to the crossover
operation utilized by genetic algorithms” [52], despite the availability of (and earlier
reference to) more appropriate analogies. The metaphorical benefits of such an
association appear limited to justifying PSO as an EA, which given the proper
historical context was probably necessary, but it is not a simile that aids in the
understanding or use of the algorithm.

The issue of structure can also be seen in existing abstractions and interpreta-
tions of ES, EP and GA, particularly those in published software libraries. These
abstractions allow the substitution of particular operators; for example, GA may use
an alternative crossover operator, though changes that are more dramatic typically
require the design of a ‘new’ algorithm. Frameworks with wide use tend to include
significant lists of operators and conventions for implementing new ones, though

CHAPTER 2. UNIFICATION 20

few provide sufficient abstraction to change a GA into something different without
library-level programming. Constructing a unique algorithm represents progress and
novelty within the field, and yet the first design decision is often “which algorithm
should I base mine on?”

Moraglio’s apt response is that a “more rational classification of evolutionary
algorithms would be based on the properties of the solution space being actually
explored” [66, p. 12]. Such an approach is relatively unsupported by whole-algorithm
design work and requires a deep understanding of the field, existing approaches,
algorithm and software design, creativity and imagination. While there is some
value in determining and understanding the performance of particular algorithms
on particular problems, recognition that both problem and algorithm contribute to
such results is not common and the use of this fact to design more appropriate
benchmarks is even rarer [48].

2.2.3 Segregation in Implementation
As mentioned in Section 2.2.2, software implementations are often targeted at a
particular algorithm or algorithms. Code reuse is a perpetual concern through-
out software engineering [85], and yet a recent survey suggests that a significant
proportion of EC researchers believe they are “first to release code in [their] area”
and there is little “other code that might substitute” [88]. While it is likely that
novel research has involved writing some code that is not already available, there is
evidence suggesting that researchers actually write a majority of their code them-
selves [30, 53]. Some reasons suggested in [53] for this bias towards creation rather
than reuse include a low perceived implementation difficulty, bad past experiences
with others’ code and an enjoyment of programming. Other possibilities are that
innovation encourages a perception that existing code is not useful and that there
is a sense of illegitimacy in publishing work based on code not written entirely by
the named authors.

When software is written for a single purpose, and particularly when that pur-
pose is to produce a single result set, it is less likely to be thoroughly tested and
verified against requirements other than those of the immediate problem [53, 88].
Specifically targeting the algorithm currently under investigation means that even
the original developer may have difficulty reusing components of their code for fu-
ture work. Libraries with wide use are often more flexible and reliable in this regard,
though the list of widely used libraries for EC is short. ECJ [60] is one library with
significant usage but is most accessible as a collection of parameterised algorithms
rather than a set of reusable algorithm components. EO (Evolvable Objects) [42]
uses a composition-based design based on operators, but still encourages full encap-
sulation of an algorithm in its own class, limiting modifiability. A detailed survey of

CHAPTER 2. UNIFICATION 21

these libraries is deferred to Chapter 5, but most of the other libraries reviewed were
either not actively maintained (updated in the last twelve months), were highly spe-
cific (targeting at most two specific algorithms) or are apparently unused by anyone
beyond the original developer.

Parameterised algorithm implementations allow ES, EP and GA to be created
by substituting operators without changing the fundamental structure. These ap-
proaches normally require a user to choose selection, crossover and mutation oper-
ations. Such implementations acknowledge the similarities between the algorithms,
but treat them as a literal fact and provide a minimum level of flexibility. The
ability to restructure the algorithm—even something as trivial as performing muta-
tion prior to crossover—is rarely provided or considered as an option. The limited
potential sometimes supports implementations in providing other features, such as
distributed processing [5], GPU processing [62], network structures [98], statistical
analysis [4, 95] and easy specifications [14]. However, the range of available imple-
mentations for EAs, combined with most providing no more than one significant
feature beyond basic algorithms, continues to prevent any single piece of software
becoming standardised within the EC field.

The need for a standard software package for the field has been raised many
times in the past, whether by those seeking to improve reproducibility [29, 30, 48]
or to promote their own development efforts [4, 14, 28, 38], with few resounding
successes. This is largely due to the established distinction between algorithms
based on ancestry. With a complete redefinition of EAs, a class of algorithms can
be created to support unification and problem-centric design. Furthermore, this
will give practitioners a useful model for research, development, communication,
presentation and related work.

2.3 ‘Inventing’ algorithms for optimisation
In order to provide a useful abstraction for EAs, many current understandings must
be reviewed and revised. Solution representations and behaviours need to be re-
duced to the simplest specification necessary to produce algorithms with optimising
characteristics without restricting generality.3 Specifying “crossover” or “real-valued
vectors” is far too limiting, both in terms of what can be expressed and what de-
signers can imagine. This approach is similar to that of De Jong [18], obtaining a
subtly different result for the same purpose of unification.

The omission of biological inspiration is deliberate, but is not intended as a
rejection of its relevance. Many useful algorithms have been explicitly inspired

3Applications such as search and learning can be viewed as optimisation problems consistent
with our definition; for simplicity, the term “optimisation” is used as a synonym for “optimisation,
search, learning and other applications that may be treated as optimisation” throughout this work.

CHAPTER 2. UNIFICATION 22

by observations in genetics, materials science or animal communities. However,
embedding such disparate ideas in a single abstraction is complicated and easily
avoided at the cost (or benefit) of a lack of explicit biomimicry. Specific algorithms
are not forced to surrender their inspiration and analogy will no doubt remain central
to the design and justification of novel approaches; common structural terminology
allows metaphorical terminology to be more clearly defined and used.

To approach a fundamental definition of EAs, this section makes full use of
hindsight while avoiding the burden of history to ‘invent’ a class of algorithms suit-
able for solving complex optimisation problems. The proposed class is, or could
be, what is currently understood to be EAs, but developing the general algorithm
from scratch eliminates (or at least mitigates) potential misunderstandings due to
overloaded and inherited terminology. Mathematical and algorithmic notations are
avoided in favour of extended description; the purpose is to investigate design and
intent rather than mechanical verifiability.

2.3.1 What are we looking for?
Computation is fundamentally concerned with solving two problems: given a func-
tion f and values x, what is f (x); and, given a function f and result y, what values
for x fulfil the equality y = f (x). A function in this context is far broader than
a mathematical expression, despite the notation, though many may be expressed
in a mathematical form. Examples of functions include “what is the sum of these
numbers?”, “how far does one travel when visiting these cities in this order?” or
“what is the speed and power consumption of this electronic circuit?”. For all cases,
the function uses known methods to determine answers to a question.

However, even given a well-defined function, the reversal of this function is rarely
straightforward. While many arithmetic functions can be inverted, the same cannot
be said of functions more generally. Inverting the descriptions of the above examples
is easy—“which numbers sum to this total?”, “which order should we visit these
cities to have travelled this distance?” and “which electronic circuit has these speed
and power characteristics?”—but the function itself is not. Many discussions of
black-box versus white-box functions essentially reach the same conclusion, though
the result here is subtly different, in that a black-box function has a transform that
cannot be seen. The focus here is on transforms that cannot be inverted.

This is a similar problem to those observed in engineering control systems: given
some system and controllable inputs, how can it be ensured that the output be-
haves in the desired way? In the engineering case, a complex or dynamic external
environment is a typical cause for an unpredictable output from an otherwise well
understood and predictable system. However, for optimisation problems, high di-
mensionality and interactions between parameters produce systems with responses

CHAPTER 2. UNIFICATION 23

that are difficult or impossible to predict. For example, while it is easy to calculate
the distance travelled when visiting each of n cities in a given order, selecting an or-
der to visit n given cities to travel a particular distance is intractable. This problem
has n− 1 variables, where the contribution of each to the total distance depends on
the value of another. The resulting interactions mean that for any significant value
of n, it is difficult to manually infer the visitation order required for a specific result.

(As a brief aside, De Jong argued in the provocatively titled Genetic Algorithms
are NOT Function Optimizers [17] that equating the two is incorrect, artificial and
unhelpful. This is entirely true concerning the behaviour and analysis of the algo-
rithm when compared to dedicated function optimisation algorithms; however, the
title should not be interpreted as discouraging the application of EAs to function
optimisation. Rather, De Jong encourages an interpretation of the algorithm as a
sequential decision-maker—choosing which set of input values to try next—that is
entirely compatible with the approach developed here.)

In order for the derivation and construction of engineering control systems to be
achievable, a number of simplifying assumptions are necessary. The most common
of these are the existence of some error function (the ability to quantify how good
particular inputs are), linearity (changes in the output are directly related to changes
in the input) and time-invariance (a given input has the same effect at all times).
Similar, though less restrictive, assumptions are also useful here. Comparability be-
tween output values is essential in order to infer rankings for inputs—a better input
is one that produces a better output—otherwise improvements towards optimality
cannot be observed. Binary (that is, one of only two possibilities), low-cardinality
discrete and symbolic outputs are generally unsuitable since they are less orderable,
though a separate error or confidence function may be useful. It is convenient to
assume that functions are continuous, such that small changes to inputs produce
small changes in the outputs and hence good inputs are similar to other good in-
puts, though this is not a strict requirement. Finally, assuming time-invariance is
a handy simplification, and is more often valid for optimisation than control engi-
neering, though problems may include time as an independent and uncontrollable
variable.

The algorithms we are concerned with here are required to discover a set of
system inputs that are in some way optimal. Optimality is not a universal char-
acteristic, but one that must exist in any system where results are qualitatively
comparable. When specifying our class of algorithms, we restrict their application
to optimisable problems, that is, those with one or more optima.

CHAPTER 2. UNIFICATION 24

2.3.2 Where do we look?
Since optimality is the primary attribute we are interested in, it is logical to consider
existing approaches from other fields. Control systems are very similar, in that they
typically attempt to match an output signal to a known reference, the optimal case
being where the output matches the reference exactly. For example, a power supply
has an internal signal that is the desired voltage, though at a much lower power
level. The regulator uses feedback from its own output to determine how to adjust
the input voltage to the transformer. Similar feedback loop systems exist in many
industrial processes.

For optimisation, there is less interest in matching a reference signal than in
attempting to minimise or maximise an output relative to other possible outputs.
Knowing the shortest path to visit all of the cities is more useful than just one
path for an arbitrary distance. (Many problems, particularly function optimisation
benchmarks, have known optima, though an algorithm designed to take advantage of
this knowledge will exhibit reduced performance on other configurations.) Without
a fixed reference, there is no meaningful proportional response to an error function
as is often used in engineering control systems. Adjustments must be based solely
on history, that is, how much improvement was observed from previous changes to
the inputs. If a particular change improved the output, it is likely that an optimal
solution is more similar to the new inputs than the previous ones.

One advantage optimisation has over a traditional control system is that prob-
lems are usually simulated. Computer simulations allow many possible adjustments
to the input values to be tested without the reset times (or clean-up times, if the in-
puts were really bad) of physical systems.4 Rather than making one adjustment and
waiting for feedback, ten, one hundred or more can be tried in a reasonable amount
of time, and many possible solutions can be ‘live’ without needing a separate phys-
ical system for each. This parallelisation allows the test-keep or test-discard cycle
from ES and EP to be generalised as follows:

• From a pool of m ‘live’ solutions, generate n variants, expanding the number
of possible solutions to m+ n.

• Reduce the pool of m+ n candidates to a pool of size m.
Even within this simple framework, there are a huge range of possibilities. How are
variants created? Is reduction based on solution quality or age? Must n be greater
than m? Does the reduction necessarily keep only the best solutions or should
some lesser solutions be retained? Is the implicit memory of previous attempts
sufficient or is an explicit history beneficial? Can m and n change over time? Each of

4Worth noting is that many engineering control systems can also be simulated and designed
using stochastic optimisation techniques. However, due to the complexity of real-world effects,
these simulations are not as accurate or reliable as physical experiments.

CHAPTER 2. UNIFICATION 25

these questions may be answered differently without departing from the fundamental
concepts of exploring possible solutions (creating variations) and focusing on the
better solutions (reducing the pool). The general process can be viewed as moving
a window of interest within a space of potential solutions: a repeated expansion and
narrowing process to find increasingly better inputs to an uninvertible function.

2.3.3 Is this an Evolutionary Algorithm?
Those familiar with EAs in their present form may have noticed a number of well-
established concepts have been omitted or dealt with very briefly. These omissions
are deliberate; some will be defined later (and may have been defined differently in
other work), while some concepts are simply not as relevant to this model as they
are historical artefacts of the development of EAs. “Fitness” was referred to without
using the term, since it will be explicitly defined in the next chapter. “Problems”
and problem landscapes will also be defined in the next chapter.

Representation is considered fundamental to many algorithms. However, in the
model described above, representation is simply not relevant. In part, this is be-
cause the model is higher level than most specific algorithms, but also because
representation-dependent concepts are subsumed into the creation of variations or
determining the function output. Whether the underlying solutions use binary
strings, executable programs or vector-based images has no bearing on the reduc-
tion step, and as will be shown in the following chapters, this abstraction supports
a useful and generalisable model.

Stochastic processes have not been mandated at any point, which are normally
considered a defining characteristic of EAs. This model and thesis use the original
definition of the term evolution as “the gradual development of something,” [72]
rather than the natural process. For similar reasons, the terms “population,” “off-
spring,” “reproduction,” “generation,” “genotype” and “phenotype” were not used.
These terms are due to the biological inspiration of some algorithms, particularly
GA, rather than the fundamental structure of the algorithms. They are, however,
convenient and generally accepted metaphors, and will be used later as descriptors
of algorithm components.

2.4 Chapter Summary
This chapter has presented the motivation for this work in detail. Section 2.1 pro-
vided the historical background required to assess the current approach to EAs,
Section 2.2 identified issues arising from adherence to the historical separation and
Section 2.3 began approaching a general definition of EAs.

Despite their independent origins, the ES, EP and GA algorithms share many
common characteristics with each other, engineering control systems and other opti-

CHAPTER 2. UNIFICATION 26

misation algorithms. These similarities are often ignored, resulting in research work
being unnecessarily linked to one but not the others, or taken literally, resulting
in software libraries that lack the ability to change anything but a few parameters.
Both of these approaches ignore that ES, EP and GA, along with other algorithms
such as GP and DE, are specific instantiations of a more general class of algorithm.

Problems resulting from algorithm segregation include:
• Difficulty in sharing advances between distinct algorithms
• Limited guidance in designing (rather than tuning) an algorithm to suit the

targeted problem
• Adherence to conventions for historical reasons rather than reassessing their

suitability for a new context
• Replication of software development because of perceived or actual unsuitabil-

ity for reuse
The definition of a general algorithm class enables the development of mitigations
for these problems. Section 2.3 outlined the basis of an iterative algorithm for
optimisation applications in preparation for Chapter 3, which expands it into a
detailed model. The fundamental algorithm is based on incrementally improving a
collection of potential solutions by repeatedly applying these two steps:

• Expand the collection of m solutions by creating n variations
• Reduce the m+ n solutions to a collection of size m

All of the algorithms discussed are shown to be instances of this EA in Chapter 3, as
are other algorithms that are normally not considered EAs. Taking the view that an
EA evolves solutions rather than simulating nature allows for a more inclusive class
that encompasses algorithms where m and n are both 1, or where the “collection” is
represented as a model or distribution rather than a set (for example, Estimation of
Distribution Algorithms). Chapters 3–5 develop this algorithm class into a complete
model and description language, while ensuring that existing work is supported, and
Chapter 6 demonstrates the practicality and benefits of the approach with respect
to software implementations, research experimentation and sharing of algorithm
designs.

27

Chapter 3

Model

The previous chapter showed that early EAs demonstrate similarities in
their structure and application to solving optimisation problems despite
being independently developed. A well-defined, unified model should
assist all users and developers of EAs with understanding and implemen-
tation. Students and researchers in particular benefit from a broader
framework for learning, teaching and discussion. A suitable model should
define the smallest set of components necessary to represent current al-
gorithms, as well as being extensible for future developments. Clearly
specified interactions and well-defined contracts allow reuse and sharing
of algorithm components. This chapter finds the minimum set of com-
ponents required to represent existing EAs and to provide a separation
of concerns that simplifies description and implementation based on the
structure of the ‘reinvented’ EA from the previous chapter. A represen-
tative algorithm selection is shown as compositions of these components
to demonstrate the model is inclusive of existing work.

3.1 Defining what to solve
One of the limiting factors in the unification of EAs is the lack of a common model.
Each originating algorithm has its own structure and terminology, which requires
adaptation or translation in order to be applied to others. This chapter defines a
new model and terminology (though many of the terms will be familiar) based on
the problems and algorithms described in Section 2.3. The model can be shared
consistently between existing EAs and applied to new algorithms that are yet to be
created.

3.1.1 Problems
Defining the problem to solve is not a trivial exercise. A functional description may
have a significant effect on the experimental setup, the complexity of the actual so-

CHAPTER 3. MODEL 28

lution or the size and comprehensiveness of the search space.1 In order to provide a
robust and useful model, a clear definition of the intended target problems is neces-
sary, or else any effort risks suffering from a lack of direction and overgeneralisation.

The discussion in Section 2.3 about the necessary simplifying assumptions showed
that EAs are intended for selecting inputs to a well-defined, but not necessarily
well-understood, function. Algorithms that use representations other than simple
numbers are not excluded; executable code, car parts and food recipes could all be
used as function inputs, producing outputs of a set of state modifications, a vehicle
and a cake, respectively. This definition is intended solely to delineate, name and
specify that component which is to be ‘solved.’

For the purposes of this work, this component is named the problem. It may be
viewed as a map from input values to output values. This mapping is deterministic
and many-to-one; a given set of input values will always produce the same output,
though more than one set of input values may produce that output. For example,
the input to a jigsaw puzzle may be a sequence of movements from a collection of
unplaced pieces into one of the available slots. Each possible sequence maps to some
final arrangement of the puzzle and some distinct sequences may map to the same
arrangement; however, given a consistent initial state and process, the result will
always be identical. Similarly, a function optimisation problem is a mathematical
expression, with arguments forming the set of inputs and the result of the expression
being the output. The expression x2, to use the mathematical term, is not one-one,
but a given value for x always produces the same result.

It may appear that this determinism constraint excludes dynamic problems.
A dynamic problem intentionally produces different outputs for the same set of
inputs to represent some real-world applications more accurately than with a static
calculation. Dynamic problems can be treated as having an extra input in addition
to the solution inputs, such as the current time. This input must be consistent
throughout a set of calculations in order to generate comparable results, effectively
producing a sequence of similar problems. Within each time-step, the problem is
deterministic, while ‘incrementing’ time creates a new problem.

As a concrete example, the shortest time to travel to each of a number of loca-
tions in a city will vary from day to day. Road works, accidents, traffic and other
closures mean that the same sequence of visits may take different times on different
days. However, all travellers taking the same route at the same time will require
approximately equal amounts of travelling time. The problem is deterministic at
time t as well as at t+∆t, though the problem at t+∆t is not the same as it was

1For example, despite
(
x3 − 6x2 + 11x− 6

)
and (x− 1) (x− 2) (x− 3) being equivalent, the

values of x that result in zero are considerably more obvious with the latter form.

CHAPTER 3. MODEL 29

at t. It is not logical to compare a trip starting at 9am with one starting at 2am:
dynamic problems are distinct when their parameters differ.

An algorithm intended solely for static problems can safely assume that all
changes in an output are due to its own changes to the inputs. However, an al-
gorithm that is intended to be robust for dynamic problems cannot make this as-
sumption. As a result, the algorithms have a different design emphasis, but entirely
distinct models are not necessary.

3.1.2 Evaluators
Fitness represents the suitability of a set of input values for the problem to which
they are applied. In trivial cases the output value from the problem may be a suitable
metric, though it is more likely that suitability will require some combination of the
output, the expected/desired result and other efficiency measures. Determination
of the fitness of a set of inputs against a particular problem is conceptualised as an
evaluator.

Unlike many other works, fitness here is not strictly defined as a real number. For
a fitness definition to be useful it must provide a partial ordering across solutions,
that is, comparing one fitness to another should result in ‘fitter,’ ‘less fit’ or ‘equally
fit,’ where more-fit fitnesses imply that the associated input values produce a more
desirable output. The actual output values are of no relevance to the EA beyond
their contribution to fitness, and the actual fitness values are rarely of interest after
solution ordering has been determined.

The usual aim of an EA is to find input values that result in the highest fitness,
these being optimal by whatever quality measures are defined for the problem. In
an extremely large search space, it is near impossible to know when the fittest
values have been found. An assumption of continuous fitness is necessary to exclude
significant areas of poor fitness based on sampling rather than enumeration. (Local
smoothness is often beneficial, since this reduces the amount of sampling necessary,
but all continuous functions will exhibit local smoothness when viewed at a small
enough scale.) EAs are normally intended for problems where the size of a sufficient
sample set is unknown or too large to enumerate. However, discontinuities in the
fitness plane are deceptive rather than fatally problematic.

Because problems are deterministic, evaluators are referentially transparent.2

Evaluations on previously evaluated solutions can be skipped because in the ab-
sence of a solution modification, the fitness is guaranteed not to change. However,
this guarantee is not directly applicable in the case of dynamic problems. Dynamic
problems typically define evaluators as parameterised against time or another vari-

2In programming, a function is referentially transparent if it can be replaced by its result without
affecting the program’s behaviour, which implies that for constant parameters its result does not
change.

CHAPTER 3. MODEL 30

able; treating such parameters as part of an evaluator’s identity or parameters,
rather than its definition, allows referential integrity to be maintained. Effectively,
an evaluator ft (x) is not equivalent to ft+∆t (x). Including a varying parameter
as an independent variable is equivalent—f (t, x) rather than ft (x)—though the
association between the parameter and the evaluator is less obvious; this model
deliberately prefers treating independent parameters as part of the identity of the
evaluator (that is, ft (x)).

This does not restrict in any way the points within an algorithm step at which
evaluations can occur. Intermediate solutions can be generated, evaluated and dis-
carded freely because fitness can be treated as an immutable property of the solution
itself (or more precisely, a property of the tuple of the solution and an evaluator).

An alternative approach is to allow evaluator results to change while maintaining
their identity, meaning that f (x) is no longer referentially transparent and could
produce different values at t and t+∆t. This prevents (in the general case) the ability
to cache fitnesses, but allows dynamic evaluators to more closely match current
implementations (such as ECJ, which provides options for multiple re-evaluations
[60]) and conceptualisations that have the problem varying completely independently
from the algorithm. However, since fitness caching can often reduce execution time
significantly and without user intervention, as well as the non-caching behaviour
being obtainable where desired and the risk of subtle errors caused by mutable
evaluators, this model considers an evaluator to always be a deterministic map from
one set of solution parameters to one fitness value. Where the result of the mapping
should change, an explicit change of evaluator is required.

3.2 How to ‘have’ a population

3.2.1 Individuals
In this model, each set of input values to a problem is identified as an individual.
The representation of an individual is irrelevant to the definition of an algorithm,
despite many existing algorithms specifying it as a distinguishing factor. For most
applications, the only requirement is that individuals can be ordered: given two
individuals, one can consistently be determined to be better or equivalent. The
usual comparison attribute is fitness, discussed in Section 3.1.2, though age (the
time since the individual was first observed) and similarity are sometimes useful
traits.

An individual is identified by the input values it represents, which implies that
each exists only once and may not be modified (just as the value of a particular
number cannot be modified). This does not prevent the model from faithfully rep-
resenting existing algorithms, as most variations to individuals can be implemented

CHAPTER 3. MODEL 31

with a substitution of one individual for another. The benefits of immutable data
structures to understanding and reasoning about algorithms are well known [1].
Conceptualising individuals as immutable values simplifies aliasing—where multi-
ple references are held to the same storage location—in contrast to models used by
existing software frameworks that allow in-place modification of individuals. Typ-
ically intended as a performance optimisation, in-place modification of groups and
individuals may improve execution time in some cases, particularly on systems with
very limited memory, but always increases implementation complexity [1].

Individuals are the atomic (indivisible) data element in this model—all opera-
tions are performed using at least one individual. The layout and contents of an
individual are deliberately unspecified, requiring operator implementations to ac-
tively support particular representations. Individuals are not explicitly identifiable
by name, reference or index; they exist only as members of groups (Section 3.2.2)
and streams (Section 3.2.3). Evaluating an individual determines its fitness value,
and since individuals cannot change and evaluators are deterministic, evaluation is
a mapping from one individual and one evaluator to precisely one fitness. Using a
different evaluator means that the fitness value may change and is the intended use
of evaluators.

3.2.2 Groups
Much of the power of EAs comes from their simultaneous use of multiple solutions.
Parallel exploration followed by exploitative convergence is observable in useful EAs.
Typical EAs contain a “population” of individuals from which “parents” are selected
and “offspring” are created; the generalisation of this concept is a group.

A group is a list3 containing a subset of all possible individuals. Groups are
used to identify, store and associate individuals but provide no direct functionality.
Multiple groups may contain the same individual simultaneously and each group
may contain an individual multiple times; the size of the group includes repetitions
and is always finite. Groups have an associated name and are immutable: they can
be ‘modified’ only by creating a new group and changing the name associations.

Figure 3.1 shows three groups, with some individuals appearing in more than one
and some appearing outside of any group. The main pool of individuals is stored in
the population group, with parents containing a subset. The offspring group was
generated by stochastically modifying some members of the parents group; since not
every individual has changed, offspring shares some members with parents. Group
names are for convenience and descriptiveness only; they have no influence on the
behaviour or use.

3An array or ordered multiset; this is not an implementation requirement for a particular data
structure.

CHAPTER 3. MODEL 32

population
parents

offspring

(not in a

group)

Figure 3.1: Three groups containing subsets of all known individuals.

Individuals cannot be directly accessed at the algorithm level—the appropriate
mechanisms are described in Section 3.2.3—and all operations are applied to entire
groups. A group of size one may be used to retain a single individual, for example,
when treating the fittest individual separately from the rest. Individuals that are
not members of groups cannot be accessed except through exploration; those that
have never been part of a group are the unexplored area of the search space.

3.2.3 Streams
Algorithms are intended to be concerned solely with groups and their interactions
rather than the behaviour of particular individuals. However, groups are merely
storage mechanisms for individuals, which are the actual computational element. In
order to define consistent interactions, the contents of a group need to be accessed
in a general but efficient manner. Streams are temporary sequences of individuals
that are produced as the result of applying operators (Section 3.3) to groups or
other streams. Streams are “delayed lists” [1, p. 316] that may be queried to obtain
(“take”) the next individual. Groups may be implicitly converted to streams, and
streams may be stored in a group by fully enumerating all individuals (or potentially,
all remaining individuals) and explicitly creating a group to contain them.4

Operators are applied to a stream to make use of the individuals it provides.
Streams are consumed on use and cannot be reused by another operation without
either recreating the stream or by using a group as temporary storage. Groups
implicitly treated as streams are not consumed and can be reused.

There is no requirement for a stream to be stored in memory, which allows a
potentially infinite number of individuals to be made available. Streams of infinite
length require a partition operator (see Section 3.3.3) to limit the group to a finite
size.

For example, randomly selecting individuals from a group with replacement pro-
duces an infinite stream. The result of this cannot be stored in finite memory, nor

4The parallel with programming languages is that groups are named variables (sometimes called
an lvalue) while streams are temporary expression results (sometimes called an rvalue). Variables
(groups) can always be used as an expression (stream), but an expression must be evaluated before
storing it into a variable.

CHAPTER 3. MODEL 33

does it need to be, and so partitioning is used to create a group containing only the
first N individuals. Selecting individuals without replacement can never produce a
stream with more individuals than the source: if the source stream was finite then
the result will also be finite. Partitioning is then only needed to produce a group
smaller than the original.

Both individuals and groups are persistent and continue to exist beyond the scope
of a given operation. The ‘global’ scope in which groups exist is not intended to
have the intricacy of modern programming languages—one name always represents
the same group—which removes a source of complexity and subtle logic errors.
Listing 3.1 shows a C++-style analogy to these scoping rules, specifically that each
iteration accesses and updates a single set of groups.

Generators are special streams that provide infinite individuals. They are nec-
essary to create initial groups and can produce randomly generated individuals or
some subset of all potential individuals. Other uses of generators include replace-
ment of invalid or corrupt individuals or as sources of diversity. For example, a
generator Random Real Values may produce every number an infinite number of times
in non-sequential order—effectively, a random number generator. Partitioning Ran-

dom Real Values by storing only the first fifty values may provide an initial set of
individuals for an algorithm.

3.3 How to ‘improve’ a population

3.3.1 Operators
Operators represent the two fundamental operations that may be performed on col-
lections of data: transformation and filtering [9,93]. In this context, transformations
represent the creation of one or more output streams by combining or modifying
individuals. Input individuals are sourced from groups or a stream—the result of
another operator. Operators are components, in that they have “been designed to
be used in a compositional way together with other components” [68, p. 4], and
composing operators using groups as storage points defines a network that traces
the flow of individuals through an algorithm. This network is an oriented digraph
without loops,5 where each source of the graph is a generator or a group from the
previous iteration and each sink is a group. Multiple sources and sinks are permitted.

The two fundamental operations are further divided to give five classes of oper-
ators, shown in Figure 3.2 with examples:

• Stream operators, which merge (see Section 3.3.2) and partition (see Sec-
tion 3.3.3) streams,

5Strictly, loops are permitted, provided they begin from a group and incur a delay of one
algorithm iteration. A perhaps more intuitive interpretation is that the contents of a group persist
between iterations and those from the previous iteration may be used as sources.

CHAPTER 3. MODEL 34

int main()
{

// "global" groups
Group population;
Group parents;
Group offspring;

// initialisation phase
population = part(100, random_real(0.0, 1.0));

// iteration phase - one hundred iterations
for(int i = 0; i < 100; ++i)
{

// parents = part(100, tournament(2, 0.9, population))
{

Stream stream1 = population.asStream();
Stream stream2 = tournament(2, 0.9, stream1);
Stream stream3 = part(100, stream2);
parents.replaceWith(stream3);

}
// offspring = mutate(0.1, crossover(0.9, shuffle(0.05, parents)))
{

Stream stream1 = parents.asStream();
Stream stream2 = shuffle(0.05, stream1);
Stream stream3 = crossover(0.9, stream2);
Stream stream4 = mutate(0.1, stream3);
offspring.replaceWith(stream4);

}
// population = part(100, sort_descend(merge(population, offspring)))
{

Stream stream1 = population.asStream();
Stream stream2 = offspring.asStream();
Stream stream3 = merge(stream1, stream2);
Stream stream4 = sort_descend(stream3);
Stream stream5 = part(100, stream4);
population.replaceWith(stream5);

}
}

}

Listing 3.1: Analogy of scoping rules using C++.

CHAPTER 3. MODEL 35

Transformation Operations Filtering Operations

Stream

operators
Joiners Variation

operators
Filters Selectors

(Examples) (Examples)

Merge

Partition

Tuples

Cartesian

Product

Crossover

Mutate

Fair Coin Toss

Valid Solution

Doubler

Fitness

Proportional

(Examples) (Examples)

Figure 3.2: Operator classifications and examples.

• Joiners, which create associations between individuals in streams (see Sec-
tion 3.3.4),

• Filters, which remove individuals from streams based on simple predicates (see
Section 3.3.5),

• Selectors, which choose and order individuals from streams based on more
complex mechanisms than filters (see Section 3.3.6); and

• Variation operators, which produce new individuals based on those in an ex-
isting stream (see Section 3.3.7).

These classes are orthogonal, such that knowing the class of operator allows
behavioural assumptions to be made safely. For example, a filter can never produce
a stream that is longer than its source and variation operators always maintain
order, despite potentially changing, inserting or omitting individuals. EC already
has a number of sub-classifications for variation operators, such as sexual versus
asexual, though for this abstraction the greater level of distinction is not important.
A general variation operator creates one or more individuals based on one or more
individuals in the source; strictly defining the number of individuals involved is less
important than guaranteeing preservation of order.

While it is possible to encapsulate an entire algorithm within a single operator,
this is not the intended use of the model. A well-designed algorithm will abstract
as little as possible into many operators, allowing the composition to define the
algorithm: composing simple components promotes greater code reuse than using
few monolithic operators [68].

The behaviour of an operator may be parameterised, but the class of the operator
does not change. For example, a selection operator may act like a filter when certain
parameters are specified but it is still classed as a selector, and a ‘filter’ that performs
reordering with certain parameters is always a selector. A variation operator may
not modify any individuals if its application rate is very low, but since it retains
the potential to create modifications, it is classed as a variation operator, as are
operators that aggregate an entire group into a single representative individual.

CHAPTER 3. MODEL 36

A merged B

Figure 3.3: Merging streams A and B into group merged.

Despite the clear delineation of selection and variation into separate steps in
many existing algorithms, where all selection must be performed before any vari-
ation, the two concepts often intermingle. For example, a variation phase may
include implicit filtering of degenerate combinations or invalid results. In the model
presented here, which does not enforce a strict structure, such tight coupling is un-
necessary; a filtering operator can be included either before or after the variation
operator. Further, multiple filters can be used to apply different variation operators
to parts of the same group. The general nature of graph-style operator composition
allows a wide range of novel algorithms to be described that are not possible with
typical ‘select–crossover–mutate–survive’ structures.

3.3.2 Merging
The merge operator produces an output stream by concatenating multiple groups or
streams. Merging is a stream operator that does not modify or reorder individuals.
In the simplest case, applying the merge function to two groups produces a new
group that contains all individuals from both. Since order is preserved, given streams
A = [1 2 3] and B = [4 5 6], merge (A,B) = [1 2 3 4 5 6] and merge (B,A) =

[4 5 6 1 2 3] (shown in Figure 3.3).
Merging is an operation that is not explicitly specified for many existing al-

gorithms; rather, it is implied. For example, algorithms that include competition
between parents and offspring implicitly merge the two groups before performing
some type of selection.

While not theoretically relevant to most algorithms, the guarantee of order
preservation allows operator composition to create complex expressions without the
need to restate ordering assumptions. Consider a case where each individual in a
group parents is mutated and stored in a group offspring. For each individual in
offspring, the individual at a matching offset into parents is known to be the one
on which it was based.

Order preservation also allows streams to be merged as well as groups. Streams
do not support any sensible concept of a set-based union, but provided only the final
stream is infinite, concatenation is well defined. For example, appending a generator
or infinite selector to a group and partitioning can be used to ensure that the result
is never shorter than the desired size. Without the guarantee of order, however,
ensuring the infinitely long stream is not concatenated prior to finite-length groups
would become complicated.

CHAPTER 3. MODEL 37

part(A, 1)

part(A, 3) A

Figure 3.4: Partitioning stream A into two finite streams.

joined A B

Figure 3.5: Joining groups A and B by index.

3.3.3 Partitioning
The partition operator takes a specified number of adjacent individuals from the
front of the input stream. Repeated applications of the partition function to the
same source stream continue taking individuals, but individuals can only be taken
once. If the size requested exceeds the number of available individuals, all individuals
are taken and the result is smaller than the request. If the size is omitted, every
remaining individual is returned; if the source stream is infinite and the size is
omitted, the resulting stream is also infinite. Infinite streams cannot be stored in
groups.

Partitioning preserves order, such that an infinite stream A = [10 11 12 13 . . .]
is partitioned as part (A, 3) = [10 11 12] and then part (A, 1) = [13] (shown in
Figure 3.4). The order of application is important, since elements of the stream
may only be taken once.

Partitioning is required frequently in this model; at an algorithmic level, it is the
only way to separate individuals for separate treatment. For example, an algorithm
may require replacing one individual in a group population with one individual from
a group offspring. Applying a partition operator to population twice, the first
taking one element and the second taking the rest, produces a finite stream (the
result of the second application) that is identical to population but missing the first
individual. The first individual from offspring is obtained in a similar fashion; a
subsequent merge produces the required group. (To remove a specific individual,
rather than whichever happens to be located first, a selector can be used to reorder
the stream.)

3.3.4 Joining
Merging allows multiple individuals to undergo the same operations as part of a
coherent group, and variation operators may use adjacencies within a group to infer
associations such as a pair of parents for recombination. However, a more general

CHAPTER 3. MODEL 38

mechanism for arbitrarily associating individuals is also required, particularly in
order to handle algorithms with multiple distinct individual types.

For example, an algorithm that optimises coordinate values in a two-dimensional
plane might evolve x and y coordinates independently in separate groups. If these
two groups were to merge, there may be no way to determine which value was for
which axis and no way to evaluate them as pairs. If the groups Xs contain [1 2] and
Ys contain [3 4], then taking the Cartesian product of these should produce a group
containing [(1, 3) (1, 4) (2, 3) (2, 4)]—the coordinates of interest—while the merge
operator would produce [1, 2, 3, 4], which is not useful in this situation.

A joiner is an operator that takes one or more streams and produces a stream
of joined individuals. Each joined individual is a tuple referencing one individual
from each source in the order the sources were provided. References to the original
streams or groups are not necessary, since immutability means that changes made
to the joined group cannot affect any others. Joined individuals are treated iden-
tically to regular individuals: an evaluator may assess fitness, selectors and filters
may be applied and groups of joined individuals may be created, merged and parti-
tioned. A variation operator may be used to extract the component individuals and
specially designed evaluators can distribute the joined individual’s fitness among its
components.

Joining comprises elements of merging and selection but in a form that cannot be
specified without a separate operation. For example, where individuals in a parents

group are known to have variations in offspring at matching positions, joining pro-
vides a mechanism to associate each varied individual with its unvaried counterpart,
while merging creates a group that simply contains both. More precisely, merging
group P with the varied group

[
p
′
: p ∈ P

]
produces a group M such that

∀p
(
p ∈ P ⇒ (p ∈ M)

∧(
p
′ ∈ M

))
(3.1)

while joining the same groups by position produces J such that

∀p
(
p ∈ P ⇒ 〈p, p′〉 ∈ J

)
. (3.2)

As another example, let group A contain [1 2 3], group B contain [4 5 6], tuple (x, y)
be a joiner producing index-associated pairs and cart (x, y) be a joiner producing the
Cartesian product. Applying tuple (A,B) gives [(1, 4) (2, 5) (3, 6)] (as shown in Fig-
ure 3.5) and cart (A,B) gives [(1, 4) (1, 5) (1, 6) (2, 4) (2, 5) (2, 6) (3, 4) (3, 5) (3, 6)].
Either of these streams may be stored in a group, evaluated or otherwise manipu-
lated as regular streams, though operator implementations need to be aware of any
distinction between joined and non-joined individuals; by design, the model treats
all groups identically and without regard to the individual representation.

CHAPTER 3. MODEL 39

Array-of-structures Structure-of-arrays

Figure 3.6: Array-of-structures and structure-of-arrays representations.

When a source group contains already joined individuals they are treated as
regular individuals. For example, the result of applying tuple (x, y) to [(1, 4) (2, 5)

(3, 6)] and [7 8 9] is [((1, 4) , 7) ((2, 5) , 8) ((3, 6) , 9)]. Joining does not extend or
modify the existing individuals in any way.

Joining allows the resulting group to be stored using either the array-of-structures
or structure-of-arrays models, shown in Figure 3.6. One or the other of these rep-
resentations will typically be more efficient depending on the operations to be ap-
plied. For example, array-of-structures suits coevolutionary algorithms that inter-
pret joined individuals as distinct individuals, each having a distinct fitness and
identity. In contrast, Differential Evolution associates a base vector with a target
and two mutation vectors; structure-of-arrays provides simpler construction while
allowing a traversal of the group’s elements to represent the correct associations.
Both representations are equivalent, and it is left to performance-conscious imple-
mentations to determine which to use.

Joiners may be limited, with a loss of convenience but not generality, to a single
fixed operator that joins individuals in multiple streams by position. This restric-
tion, however, complicates the specification of joiners that select individuals that
are compatible in some way (as required in DE [76]). In these cases, selection is
inseparable from joining; including the selection logic as part of the joiner simpli-
fies expression and reasoning. As with selectors, joiners may be parameterised or
restricted (on a per-operator basis) to finite streams or groups.

Co-evolutionary algorithms, such as CCGA-1 and CCGA-2 [75], require joining
in order to evaluate a joined individual against the problem and distribute the fitness
amongst the component individuals (“credit assignment”). When a joined individual
is evaluated, the resulting fitness is associated with it and not the individuals that
form the association. Such behaviour would interfere with most credit-assignment
schemes, which have to account for repetitions and weighting between components.
The general solution to credit-assignment is to model the evaluation as multiple
problems: the primary problem evaluates a joined individual and assigns a single
fitness, and credit-assigner evaluators assign fitness to the source individuals based
on their contribution to members of the joined group. This maintains the rule of
one fitness value per individual per evaluator, while allowing credit assignment to

CHAPTER 3. MODEL 40

fair coin toss (filter)

Figure 3.7: A filter that removes approximately half of the individuals from a stream.

account for individuals that form part of multiple joined individuals (which would
not be possible if fitness was directly assigned to a member of a joined individual).

There is no requirement in either merging or joining for all individuals in a
group to be of the same underlying representation or use the same evaluator. This
allows very distinct individuals, for example, an executable program and a set of
constants, to be joined and evaluated as a single element, provided the evaluator is
aware of this representation. Merging presents a more complicated scenario; mixing
different types of individuals implies some form of operator overloading or type
aware implementations that are unlikely to be easily implemented or analysed.

3.3.5 Filtering
Filters apply a predicate to each individual in a stream, producing a substream that
only includes those individuals satisfying the predicate. Filters can be applied to an
infinite stream, in which case the returned stream must be assumed to be infinite.
A filter never produces a stream that is longer than, in a different order to, or that
contains individuals that were not in the original stream.

Filters implement functionality such as removing invalid individuals from groups
or dividing groups based on an attribute of each individual. Predicates cannot
refer to individuals from the source stream other than the one being tested, which is
necessary to ensure that they may be applied to infinitely long streams. For example,
the predicate “Are the components of this individual within the valid range?” can
be applied to a finite or an infinite stream. Figure 3.7 shows a filter that randomly
removes individuals with a probability of 50 per cent, which can be independently
applied to each member of the source stream.

If a predicate needs to compare against individuals that may come later in the
stream, a selector must be used instead. For example, “Is this the fittest individual
in this group?” depends on knowing information about other individuals in the
stream, which filters do not. However, “Is this individual fitter than x?” is a valid
predicate for a filter, since it only depends on a specific constant value. (“Is this the
fittest individual so far?” is also a suitable filter, though probably not particularly
useful to an algorithm.)

CHAPTER 3. MODEL 41

doubler (selector)

Figure 3.8: A selector that creates a stream containing each individual twice.

In essence, a filter is a validation or constraint satisfaction operation, in that it
reduces a stream to ensure that some constraint is met by all individuals, while a
selector is an algorithmic operator with its own non-trivial analysis that is indepen-
dent from the complete algorithm. Software implementations of this model can use
the distinction to improve execution performance and simplify coding requirements;
stateless filters are safely parallelisable and require only the predicate to be specified,
for example.

3.3.6 Selection
Selectors produce a stream by choosing individuals from a source stream. Selectors
are not required to preserve order and the output stream may be longer than the
source if individuals are chosen more than once. Unlike filters, selectors may cache
the entire source stream to allow selections based on information about other indi-
viduals, such as selecting in order of fitness. Roulette-wheel style selection requires
the sum of all fitness values to allow normalisation and must return individuals more
than once in order to affect the resulting fitness distribution.

As an option, selectors may be suitable for use with infinite streams. Figure 3.8
shows a selector that expands a stream by returning each individual twice. Because
the length of the stream is increased, even though order is maintained and no aggre-
gate information is required, this operation is classed as a selector and not a filter.
Selectors may return infinite streams even if the source is finite.

Although selectors can produce identical results to filters, where possible, the use
of filters is preferred since the tighter restrictions make them easier to understand.
Filters only ever produce subsequences of the source, while selectors may perform
complicated actions to determine which individuals are returned. Common tourna-
ment selection implementations (for example [7,31]) choose a number of individuals
from a source group (commonly two or seven) and return the fittest of this pool.
This process is not a simple predicate and necessitates a thorough description and
analysis of its behaviour. In contrast, determining whether the components of an
individual are within a constant range can be expressed as a simple predicate; clas-
sifying this as a filter effectively communicates both the behaviour and the intent

CHAPTER 3. MODEL 42

to a reader. For pure theoretical work, filters allow invariants to be more easily
determined, whereas selectors introduce a source of complexity into the analysis.

3.3.7 Variation
Variation operators produce a stream of individuals based on those in a source
stream. Since individuals are immutable, each variation is a copy with modifications
and the original individual is unchanged. A common parameterisation for variation
operators is the probability of each individual being modified, which may result in
some of the source individuals appearing in the new stream.

For example, a variation operator Mutate Random might produce a stream of indi-
viduals where some have one component replaced with a completely random value.
The operator could copy the entire source stream before mutating individuals in
place, or may replace components as part of copying each, but the original individ-
uals are not modified and, once the operator has added the new individuals to the
output stream, these cannot be modified again.

Variation operators must always be usable with infinite streams and the size of
the resulting stream is not required to match the size of the source. While one
or more individuals may be used to produce one or more variations, they must be
adjacent in their streams and the resulting individuals appear in the order of the
originals. If this were not the case, it would be impossible to associate specific
offspring with their parents, as is required in some parameter adaptation schemes.

For example, a recombination operator Uniform Crossover might take adjacent
pairs of individuals from the source stream. Components are randomly selected from
either individual and combined to produce a new individual. The resulting stream
will be half the length of the source (assuming the source has an even length), and
an individual located at index i in the result is known to have parents at 2i and
2i+ 1 in the source.

While creating offspring is a common application, it is also possible for variation
operation to produce individuals that are not directly related to the source. For
example, an operator Bit Probability may use n binary individuals to produce one
real-valued individual, with each element containing the rate of 1 bits occurring in
the source stream. This real-valued individual may then be varied by a Bit Selector

operator that produces infinite binary-valued individuals based on the probabilities
in the source. Using individuals with different representations as intermediate values
allows many interesting algorithms to be described, and in particular supports the
creation of EDAs.

CHAPTER 3. MODEL 43

3.3.8 Termination
A difficulty with applying EAs to real-world problems is the lack of estimable or
repeatable running times. Purely deterministic search algorithms have well under-
stood best, average and worst case performance analyses. For example, linear search
has constant best running time (in the relatively unlikely case that the first value
tested is the search target) but a worst case proportional to the size of the search
space. However, the search spaces that require EAs are not as well understood,
making analysis of average and worst-case times difficult or impossible. Even best
case timings cannot be assumed to be constant, since many problems require an
extensive search to confirm optimality, even if the first solution tested appears ade-
quate. Worst-case times may be infinite because of the possibility of the algorithm
becoming ‘stuck’ at an insufficiently fit solution (often called “premature conver-
gence”).

Without any obvious halting condition other termination criteria are used, most
of which can be categorised as measuring effort, diversity or quality. Effort measure-
ments count iterations, evaluations, seconds or the number of individuals created,
terminating (or restarting) the algorithm after a predetermined amount. These mea-
surements have the most predictable running time, though there is no guarantee of
a quality solution being found. Comparative research often runs multiple algorithms
and compares the best fitness found after a fixed amount of time or effort, though
there is no universally accepted and used effort measurement and this “competitive
testing” of algorithms has been criticised as unscientific [48].

Diversity measurements allow an algorithm to continue running until the search
process stalls. Such a condition may be detected by comparing the similarity of
individuals, by measuring the improvement over time of the best-known individual
or the success rate of individual variation operators. Terminating based on diversity
is often an appropriate compromise when a good solution is required, but “good”
is poorly defined and time is not a limitation. Some algorithms will very quickly
abandon diversity in order to exploit a section of the search space, while others
maintain a higher diversity to achieve wider exploration. In general, however, EAs
converge to the best solution they find.

Quality measures terminate an algorithm when a solution is found that is ‘good
enough.’ Typically, a fitness value is specified, where the first observed individual
that is as fit or fitter is considered the final solution. Quality may be based on more
criteria than simply fitness, though this may be seen as an indication that fitness is
poorly defined, since it is supposed to represent solution quality. Measuring quality
guarantees that an algorithm will continue running until a useful solution is found.

CHAPTER 3. MODEL 44

Initialise Iterate Continue?

No

End

Yes

Figure 3.9: General structure of iterative algorithms.

However, if no solution exists or the algorithm converges to a suboptimal solution,
termination may never occur.

Combining multiple termination conditions usually produces the most practical
limits. For example, a constant fitness limit and a fitness gradient diversity measure
will run an algorithm until a good solution is found or the algorithm stops finding
improvements. The reaction to each case may be different: for example, termination
due to lack of diversity may restart the algorithm with different initial conditions,
while a fitness-based termination indicates a successful search.

In this model, termination criteria are assessed between each iteration, as part
of the “Continue” block shown in Figure 3.9. The general structure consists of
two phases: initialisation and iteration, each with a different operator network but
sharing groups and other state. The initialisation phase generates the initial groups,
allowing the iteration phase to assume that all necessary groups already exist. In
some cases, the initialisation phase is not required and may be omitted, though since
such algorithms then cannot use results from previous iterations they are better
described as repetitive rather than iterative. Any algorithm that may use values
from earlier iterations requires initialisation. No information is discarded between
iterations, all groups and other context remain unchanged, and for the purposes of
statistics collection and termination, the initialisation phase is considered the first
iteration; if a termination criterion is met after initialisation, the iterating phase
never occurs.

Given the range of options for termination criteria and reactions, and the poten-
tial for new developments in this area, it is not appropriate to mandate or specify
a particular functionality or model. Further, since termination criteria does not de-
fine an algorithm—GA is still GA whether it runs for 50 generations or until fitness
reaches a certain value—specification is outside the scope of this model. The use
of arbitrary groups rather than specifically designated populations, as in other ab-
stractions, prevents general statements regarding the source of relevant individuals.
Co-evolutionary algorithms in particular may create and evaluate groups that are
not intended to be considered for termination. Termination conditions are exper-
imental parameters, rather than algorithm features, and their specification is best
left to implementations.

CHAPTER 3. MODEL 45

3.4 How to share an algorithm
One of the purposes of the conceptual model presented here is to simplify presenting
and sharing EAs with the research community. At present, algorithms are often
described in literature in an imperative manner, that is, ‘first A happens, then B,
followed by C,’ (for example, as in [31]). Descriptions that break an algorithm into
component parts can suffer from complexity when recombining each part into a clear
structure (as in [7]). Despite the complexity, modularity is recognised as “the key to
successful programming” and the ability to “glue” components together efficiently
is considered the greatest benefit a programming language provides [50].

The examples in Section 3.5 use English prose and diagrams to connect the
components into a recognisable system, though this is far from an ideal format.
Ambiguities within the English language cause practically every published specifi-
cation to be open to (mis)interpretation.6 For an algorithm description, this results
in multiple, differing implementations that all claim to represent the same algorithm.
This is not the intent of the original authors, who do not want incorrect implemen-
tations of their algorithm in use. Equally, implementers may be frustrated when
they encounter an ambiguity in a description that cannot be resolved using readily
available information [53].

A common mitigation is the provision of pseudo or executable source code, either
as supplementary material (as in [19] and [76]) or an integral part of the description
(as in [12]). However, despite the availability of source code, it may remain difficult
or impossible to reproduce the original behaviour (as evidenced by [73]), particularly
when insufficient time was available for “tidying up” the code before publication, or
when translation into a more familiar programming language is required [53, 64].

With the model described in this chapter, the identification and abstraction of
component parts of an algorithm become available to authors without having to
define interfaces, general behaviours and terminology. Direct citation of an operator
in another publication is possible, since its behaviour is decoupled from the context,
the contractual obligations of the algorithm can be clearly defined and abstraction
from the application is easily achievable.

In Section 3.5, diagrams show the connections between operators (figures 3.11–
3.16). However, despite providing a useful and intuitive overview of the system, these
diagrams lack the specificity needed to actually implement the algorithms. Some
form of programming or specification language is necessary for a full implementation.

At a minimum, a specification language requires the ability to specify operators,
named groups and the connections between them. Other useful features may include

6A problem that many professional organisations attempt to mitigate by providing standard
definitions of selected words, for example, in IETF RFC2119 (http://www.ietf.org/rfc/rfc2119.
txt).

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt

CHAPTER 3. MODEL 46

initialisation phase
population = (part 100 (random_real 0.0 1.0))

iteration phase - fifty iterations
repeat 50
parents = (part 100 (tournament 2 0.9 population))
offspring = (mutate 0.1 (crossover 0.9 (shuffle 0.05 parents)))
population = (part 100 (descending (merge population offspring)))

end repeat

Listing 3.2: Example of a possible specification language inspired by functional programming.

parameterised operators, arithmetic and numeric variables, external functions, ter-
mination conditions, user interaction, tools for statistics collection, loops, textual
macros and conditional execution. Inclusion of any extra features risks increasing
the complexity of the language and thus potentially offsetting the gains provided
by the conceptual model’s abstractions. There is no benefit in defining another
general-purpose programming language.

Due to the functional nature of the operators described in Section 3.3.1, use of
a functional programming style would appear to be suitable. An example of how
such a language may look is shown in Listing 3.2, with a visual representation of the
iteration part shown in Figure 3.10. The features shown in this example are named
groups, parameterised operators and a parameterised generator. Some restructur-
ing would be necessary for execution in pure functional programming languages,
primarily due to the iteration phase requiring a recursive definition. However, by
substituting the transient groups a single (recursive) expression is found, shown in
Listing 3.3, that produces the final group after 50 iterations.7

With a suitable library of functions, even without following the concepts de-
scribed here, Listing 3.3 can be written without need for a customised, domain-
specific language. In many less ‘pure’ functional languages, Listing 3.2 is also pos-
sible. However, in both cases the simplicity of the code decreases dramatically with
any increase in the complexity of the algorithm; the amount of explanation required
for both examples negates any modularity advantage.

A second source of inspiration comes from the diagrams that have been used (such
as Figure 3.10). Rather than a functional notation, which encloses each previous
calculation as a parameter of the next, a pipelined structure treats the stream of
individuals as separate from operator parameters. Such a notation may appear as
shown in Listing 3.4. This example is similar to the binding operators in some
functional programming languages, for example, Haskell’s >>= operator. The flow

7Referential transparency is essential for Listing 3.3 to execute correctly, due to population n-1
being invoked twice for each n and the stochastic nature of the operators being used.

CHAPTER 3. MODEL 47

population

offspring

population

sort descending (selector)

parents

tournament (k=2) (selector)

shuffle (ps=0.05) (variation)

crossover (pc=0.9) (variation)

mutate (pm=0.1) (variation)

Figure 3.10: Iteration phase of the algorithm in Listing 3.2.

population 0 = (part 100 (random_real 0.0 1.0))

population n = (part 100
(descending

(merge
(mutate 0.1 (crossover 0.9 (shuffle 0.05

(part 100 (tournament 2 0.9 (population n-1)))
)))
(population n-1)

)))

final_population = (population 50)

Listing 3.3: Listing 3.2 adapted to use recursion.

CHAPTER 3. MODEL 48

initialisation phase
random_real(0.0, 1.0) -> part(100) -> population

iteration phase - one hundred iterations
repeat 100
population -> tournament(2, 0.9) -> part(100) -> parents
parents -> shuffle(0.05) -> crossover(0.9) -> mutate(0.1) -> offspring
merge(population, offspring) -> descending -> part(100) -> population

end repeat

Listing 3.4: Example of a possible specification language inspired by a pipeline structure.

of individuals from one or more groups, through some operators and into another
group is shown clearly.

The design of a language for the purpose of specification, description, definition
and execution is given in the Chapter 4, though this represents only one possible
use of the model. Even without the use of a specific description language, the model
serves as a useful breakdown of EAs into easily defined, combinable, explainable and
researchable components.

3.5 Example Algorithm Descriptions
This section describes seven established algorithms by identifying their components
in terms of the concepts described in this chapter. The range of algorithms is
intended to be representative of algorithmic development within EAs and widely
used throughout the literature. As it is only a sample, this section cannot be taken
as complete proof of the model’s suitability for all EAs. However, since most related
algorithms are based on one of the algorithms presented here, there are unlikely to
be such significant structural differences that representation is impossible.

The combination of components is described briefly in text and diagrammatically
and references to more detailed descriptions of the algorithms are provided. Prior
familiarity with the algorithms may assist in understanding, although some of the
terms used are not necessarily standard for each algorithm but mirror the concepts
already described here. All of these algorithms have variations that perform better
in general or for specific applications; the examples shown are adapted from [12].

3.5.1 Evolution Strategies
ES8 [19,33,82] consists of a single variation operator and one of two selection opera-
tors. Individuals are represented as vectors of real numbers. Initialisation generates
a pool of individuals from random values. Each iteration, λ individuals are gen-

8In this case, the classical Evolution Strategies is used, rather than the self-adaptive varieties
that are considered state-of-the-art. [7]

CHAPTER 3. MODEL 49

population

offspring

population

repeat (selector)

mutate (variation)

best (selector)

Figure 3.11: Evolution Strategies evolutionary algorithm.

erated from the pool, reusing source individuals if required, by mutating one or
more components by a random amount. The best µ variations are retained, op-
tionally making the original individuals available for selection. ES parameters are
summarised as a (µ+ λ) -ES if the sources and variations are merged or a (µ, λ) -ES
if only variations are retained. For example, a (1, 10) -ES produces ten variations of
an individual and retains the best one. A (1 + 10) -ES also produces ten variations,
but if none of the variations is an improvement, the original individual is retained.

Figure 3.11 shows a (µ, λ) -ES represented as groups and operators. The two
groups are the population, consisting of two individuals, and a group offspring that
is generated anew each iteration. The Repeat, Mutate and Best operators are used to
implement the ES algorithm described above.

Repeat selector: Creates an infinite stream containing all of the individuals
in the source group, repeating the group if necessary. In this instance, the partition
operator is applied after the Mutate operator.

Mutate operator: Add a normally distributed random variable to each com-
ponent of each individual. Here, it is applied to an infinite stream, but since the
result is partitioned to λ individuals, only λ mutations are created.

Best selector: Returns the source group in descending fitness order (fittest
first). In this instance, partitioning after µ individuals produces the next population

group from the most fit individuals.

3.5.2 Evolutionary Programming
EP [33] has changed considerably throughout its lifetime, though the creation of one
variation for each source individual and competition between parents and offspring
has been consistent throughout. Each individual is mutated to produce a child,
effectively doubling the population size. The population is reduced to its original size

CHAPTER 3. MODEL 50

population

population

offspring

mutate (variation)

tournament (selector)

Figure 3.12: Evolutionary Programming evolutionary algorithm.

population

parents

fitness proportional (selector)

population

crossover (variation)

mutate (variation)

Figure 3.13: Genetic Algorithms evolutionary algorithm.

by selecting better performing individuals using competitive tournament selection.
[7, 12]

Figure 3.12 shows EP represented as groups and operators. The two groups are
population and offspring, as in ES, and the operators used are Mutate and a selector
Tournament.

Mutate operator: Create one variation for each of the n individuals. The
nature of the variation depends on the representation used for individuals.

Tournament selector: Compares each individual to a random pool of individ-
uals and orders the resulting stream by the number of ‘wins’ each individual has.
In this instance, the result is partitioned to n individuals, which make up the next
population group.

CHAPTER 3. MODEL 51

3.5.3 Genetic Algorithms
GA [47] is distinguished from ES and EP by the use of a sexual variation operator,
that is, multiple individuals are combined to produce each variation. The usual
operator for this process creates a variation by taking components from each of a
pair of parent individuals to produce a child individual. Selection is used to de-
termine the individuals that become parents, rather than to reduce the population
after reproduction. In the simplest case, all variations are retained, though some
extensions to the algorithm include a second selection step allowing one or more
fitter individuals to survive without modification. Individuals are traditionally rep-
resented using a binary digit for each component, though it is possible to use a
different representation with suitable changes to the variation operators.

Canonical GA places an added restriction that is not a general necessity of the
model: fitness proportional selection requires that each fitness value is a single, real
number, such that a simple transform may be applied to calculate selection proba-
bilities. In many cases, this is not a significant restriction, but for situations where
a simple fitness value is not possible, other forms of selection (such as tournament
or rank-proportional) may be substituted.

Figure 3.13 shows GA represented as groups and operators. The groups used
are population and parents, though if some cross-generational survival were to be
included there would also likely be an offspring group. The Fitness proportional

selector and Crossover and Mutate operators implement the remainder of the algo-
rithm.

Fitness proportional selector: The relative proportion of each individual’s
fitness determines its likelihood of being selected, such that the fittest individual
has the highest chance of being selected. The resulting stream is infinite, since indi-
viduals may be selected more than once, and hence partitioning to a predetermined
size is required for the parents group.

Crossover operator: Takes pairs of individuals and exchanges one or more
randomly located contiguous strings of bits between them. For example, combining
an individual 00000 with an individual 11111 may result in individuals 00111 and
11000.

Mutate operator: Replaces a random selection of zero or more bits in each
individual with their inverted values. For example, an individual 00000 might be
mutated to 01001 by inverting two bits.

3.5.4 Differential Evolution
DE [76] was designed specifically for numerical optimisation problems. Each individ-
ual is represented as a real-valued vector with the primary group of individuals being
called population. One variation is generated for each vector based on the values of

CHAPTER 3. MODEL 52

population

randomised tuples (joiner)

mutants

bases

DE specific mutate (variation)

tuples (joiner)

parents

trials

tuples (joiner)

tuple crossover (variation)

best of each tuple (variation)

population

Figure 3.14: Differential Evolution evolutionary algorithm.

CHAPTER 3. MODEL 53

other vectors in population, with the effect of scaling adjustments in proportion to
the distribution. As the range of input vectors converges towards optima, adjust-
ments are smaller, resulting in fine-grained search. Although the variation strategy
bears some similarity to EP (each vector produces one variation), selection differs:
EP retains all the best results, while DE only retains those that are better than
their “target” vector.

Figure 3.14 shows DE represented using groups, joins and operators. The groups
of single individuals used are population, mutants and trials, while parents contains
pairs of individuals joined and bases contains triples. Two joiners are used, Tuples

and Randomised tuples, as well as a Crossover operator for joined individuals, a Best

of each tuple selector and a DE-specific operator for the scaled mutation operation.
Randomised tuples joiner: Creates a stream of joined individuals for each

individual in the first specified group, associated with randomly selected individuals
from each other source. In this instance, population is provided three times, which
produces a joined individual with the base and two others used by the mutation
operator.

DE mutation operator: Takes joined individuals containing three real-valued
vectors and combines them by adding the difference vector between the second and
third to the first, specifically:

→
out=

→
in0 +F

(→
in1 −

→
in2

)
A scaling factor F is applied to the difference vector to control the rate at which
the algorithm converges.

Tuples joiner: Creates a stream of joined individuals associated by position
within each source group. In this instance, each individual originally selected as a
base is associated with the result of the mutation operator, and later with the result
of the crossover operator.

Tuple crossover operator: Performs a crossover operation between the two
individuals making up the joined individual. This operator and the preceding joiner
are necessary to ensure the base vectors and mutated vectors are correctly associated,
rather than being merged into a single stream.

Best of each tuple operator: Creates a stream containing the best individual
for each joined individual in the source. Because this operator is returning different
individuals to those in the source stream, it is classed as a variation operator rather
than a selector.

3.5.5 Genetic Programming
GP [54] is used to find results that are executable computer functions or programs.
For example, the symbolic regression problem [54] attempts to find a suitable ex-

CHAPTER 3. MODEL 54

parents

p2 p3

population

p1

fitness proportional (selector)

population

mutate
(variation)

crossover
(variation)

Figure 3.15: Genetic Programming evolutionary algorithm.

pression to map one set of data points to another. Program trees are constructed out
of basic arithmetic operators, an input variable and some constants. Each program
is used to calculate points based on the target data with the accumulated error used
as fitness. Other applications of GP include Boolean function derivations, hierarchi-
cal system designs and game strategies. In each case, different tree nodes are used,
though the structure and process are retained.

An initial pool of programs is generated randomly by selecting a root function
and filling its parameters with functions and terminals. New programs are created
by replacing a branch of a tree with randomly generated nodes, exchanging branches
between two trees or sometimes by simplifying or adjusting the tree structure with-
out modifying the behaviour. Programs are selected for modification, and in some
cases reproduction without modification, in proportion to their fitness (as in GA).

Figure 3.15 shows the GP algorithm as groups and operators. The population

group contains the main pool of individuals, with parents being those selected to
create the next generation. The parents group is partitioned into p1, p2 and p3,
which are varied using different operators.

Fitness proportional selector: Identical to the selector used for GA in Sec-
tion 3.5.3.

Crossover operator: Randomly selects one function node in each of two indi-
viduals and exchanges them, and all their children, between individuals.

Mutate operator: Replaces one function or terminal node with a randomly
generated tree.

3.5.6 Steady-State Genetic Algorithms
The GA described in Section 3.5.3 uses what is known as a generational model, in
that it takes only one cycle for every individual to be replaced. The steady-state

CHAPTER 3. MODEL 55

population

parents

population

crossover (variation)

mutate (variation)

fitness proportional (selector)

Figure 3.16: Steady-State Genetic Algorithms evolutionary algorithm.

model differs in selection: rather than using every single input, a (usually small)
percentage known as the generational gap are varied and retained in favour of less-
fit, older or randomly selected solutions. [31]

Figure 3.16 shows SSGA as groups and operators. Each component is identical
to those used in Section 3.5.3, but a small number of individuals are selected and
varied, with the rest of the population group being partitioned and included in the
next population group unchanged.

3.5.7 Particle Swarm Optimisation
While generally not considered an evolutionary algorithm, PSO fits the model de-
scribed here. A swarm takes the place of a population, consisting of a set of in-
dividuals that each have a position and a velocity within the search space. Each
iteration, the velocity of each particle is updated based on a personal best-seen loca-
tion (attracting the particle back to where it has already been) and a neighbourhood
best-seen location (attracting the particle to other good locations).

Figure 3.17 shows an algorithm structure that handles the main swarm group as
well as maintaining a group p_bests with the personal best locations for each par-
ticle. Storing these values as separate individuals reflects their separate identities:
two particles at the same location have the same fitness, regardless of their per-
sonal bests. Neighbourhoods are handled as part of the update velocity operator.
Variation operators Update velocity and Update position provide the primary search
behaviour, while Tuples and Best of each tuple (described in Section 3.5.4) assist
with maintaining the separate list of best positions.

Update velocity operator: Adjusts the velocity of an individual based on
the individuals personal best position (provided as a component of the joined in-

CHAPTER 3. MODEL 56

swarm

pairs

tuples (joiner)

swarm

p_bests

update position (variation)

tuples (joiner)

best of tuple (variation)

p_bests

update velocity (variation)

Figure 3.17: Particle Swarm Optimisation algorithm.

dividual), the best position amongst a “neighbourhood” of individuals and other
parameters simulating inertia or repulsion.

Update position operator: Adjusts the position of an individual based on its
velocity.

3.6 Chapter Summary
This chapter has detailed the model of EAs that was started in Chapter 2. The
model defines algorithms as a process of ‘having’ a collection of potential solutions
(Section 3.2), a method to improve this collection (Section 3.3) and a well-defined
problem to assess the solutions against (Section 3.1).

In this model, the basic algorithm elements are individuals, groups, operators and
streams. Individuals represent potential sets of input values to a problem function
with a fitness representing the quality of those values. Operators are the processing
elements that perform merging, partitioning, joining, filtering, selection and varia-
tion, while groups are intermediate storage nodes and streams represent the edges
linking storage and processing. Operator graphs created from these components
represent a complete description of an EA.

Algorithms composed using this model can be depicted graphically or textually
without the complexities that arise when all configuration aspects, such as popula-
tion sizes and termination conditions, are integrated into a single presentation. By

CHAPTER 3. MODEL 57

identifying aspects of the model that represent the algorithm itself and decoupling
them from implementation and experimental concerns, the design and discussion
can be better focused around the algorithm. Chapter 4 continues this separation by
defining a language that specifies the compositional aspects of the model; it focuses
on the algorithm and encourages the use of a structured approach to present the
required components. Chapter 5 defines the behaviour of the model to ensure that
it can be interpreted consistently and unambiguously. Chapter 6 discusses the prac-
tical applications of a general description of algorithms, particularly in the areas of
research, design and implementation that were discussed in Chapter 2.

To ensure that the model does not preclude existing algorithms, seven archetypal
algorithms have been described. These descriptions are brief but include enough
detail to provide an intuitive understanding of the algorithms. Chapters 4 and 6
expand these examples to the point where a complete, executable algorithm is shown.

CHAPTER 3. MODEL 58

59

Chapter 4

ESDL

In the previous chapter, a generalised model for EAs was presented in
detail. This model defines a small set of components that may be com-
bined relatively arbitrarily to describe specific algorithms. Using this
model allows researchers to direct and focus their work and provides
greater flexibility and code reuse for implementers of EA applications,
libraries and frameworks. However, even with a convenient model, it
is still necessary to specify all the details of an algorithm concisely and
unambiguously. Most algorithms rely on behavioural assumptions and
default values, which are areas where graphical or prose specifications
can be clumsy and imprecise. Domain-Specific Languages (DSLs) are an
approach to reducing complexity in models by abstracting specifications
into the minimum representation required for communication with other
domain experts. This chapter introduces Evolutionary System Defini-
tion Language (ESDL), which represents algorithms designed using the
earlier model with plain text. ESDL allows practitioners to compose ar-
bitrary algorithms without being restricted into fixed structures or sets
of operators.

4.1 Reusable Software
For development, reusable software generally comes in one of three forms: a library,
a framework or a language. Each of these provides functionality that a programmer
can use for their own purposes in slightly different forms, each with associated
benefits and drawbacks. Since most researchers working in EC are required to
develop their own software, the task of selecting a library, framework or language
to use (or choosing to not use any) is very likely to occur.

CHAPTER 4. ESDL 60

A library consists of executable routines that the developer can use for their own
application. For EC, the library may provide an object model for an algorithm,
allowing the developer to integrate the code into an existing user interface.

Frameworks also consist of executable routines, but are generally distinguished
from libraries by also providing the main application structure and interface. For
example, an EC framework may include a user interface and statistical analysis, but
require the developer to provide the algorithm or some operators. This is sometimes
referred to as inversion of control, since while a developers code would typically call
into a library, in a framework their code would provide the responses.

Finally, languages provide reusable software in a very transparent manner. By
integrating very common patterns into their syntax, such as objects or functions,
once a developer is familiar with a language they can be very productive. The
effectiveness of a language depends on the language model matching the intended
development, as well as the mental model of the developer. Languages can be
broadly classed as general purpose, which includes languages such as C++, Java and
XML, or domain specific. Since this chapter introduces a Domain-Specific Language
(DSL) for the model of Chapter 3, a deeper discussion of DSLs is worthwhile.

4.1.1 Domain-Specific Languages
In a software engineering context, a DSL is “a computer programming language
of limited expressiveness focused on a particular domain” [35, p. 27]. Domain lan-
guage, or jargon, has the same definition without the necessity of being a computer
programming language. In both cases, “limited expressiveness” is the aspect that
makes them useful. Restricting the range of applicability limits the potential mean-
ings and interpretations of particular words such that one familiar with the language
can efficiently discern the precise meaning from a small amount of text.

The converse of domain-specific language is general-purpose language, which
allows individual words to have one or more meanings depending on context, in-
flection and pronunciation. English is a general-purpose communication language
that is notorious for its wide range of synonyms, homophones and grammatical in-
consistencies. By contrast, musical notation is a domain-specific language that can
precisely communicate a large amount of information in a concise form. English is
able to describe a specific musical composition, but because of its greater expres-
siveness ambiguity is likely and a greater number of words are required to convey
equivalent information. Domain language does not preclude general language from
describing a subject; rather, it reduces the scope of a general language to optimise
for the characteristics of the subject.

Similar contrasts can be observed between general-purpose programming lan-
guages and DSLs. HTML (HyperText Markup Language) is a DSL for describing

CHAPTER 4. ESDL 61

the style, appearance and structure of documents, while XML (eXtensible Markup
Language) is a general-purpose language for describing structured documents. Both
share a very similar syntax, but despite the similarities, HTML is a subset of what
may be expressed using XML. The limited expressiveness of HTML and its highly
targeted applications results in a language that is more easily understood and more
efficient for its purpose.

Other examples reinforce the distinction: regular expressions provide a very terse
notation for describing complex text comparisons, though most parsing tasks (such
as matching nested parentheses) are beyond their capabilities. SQL (Structured
Query Language) provides a specification for data queries that is easy to read and
modify while being completely inadequate for data processing, and the structure of
a “makefile” [87] allows a build process to be specified without providing the full
flexibility of the underlying platform and file system. These examples show the
limited expressiveness of successful DSLs, and in each case it is the limitation that
makes the language successful. General-purpose languages can be used to produce
identical functionality, though more description of a higher complexity is required
and there is an increased likelihood of error.

A second defining characteristic of DSLs is that they are “a thin facade over
[a] model” [35, p. 18]. Each term in a domain language is associated with a much
more specific meaning than used by general language. As an example, a musician
understands the tempo markings largo and lento to indicate a similar speed but a
significantly different way to interpret and perform the music, such that one cannot
be substituted for the other. (In general language, the words have completely differ-
ent meanings that barely relate to their musical application.) The closest equivalent
word in English would be “slowly,” which captures only the speed without the as-
sociated implications of note durations, attack strength and assertiveness. Largo
and lento are the terms associated with different instantiations of a particular mu-
sical model that makes them sound different—a wide range of parameter values are
encapsulated in a single word.

Fluency is the primary manner in which DSLs improve programmer productivity.
For spoken languages, fluency is understood to mean an efficiency and effectiveness
at communicating in a language and the same applies for developers. Low- and
machine-level languages are designed for the ease of understanding and execution
by the processor; as problems become larger and more difficult at the algorithm
level, complexity of translation makes it harder for developers to write fluently at
this level. Continuing the musical analogy, representing music as note names or
letters provides an easier task for the mechanical process of pressing the correct
keys, though at the expense of obscuring a wider view of the composition. Higher-
level languages provide libraries of common machine code patterns, keywords or

CHAPTER 4. ESDL 62

domain language, with the syntax and semantics to compose them into a complete
program; the gap between the problem language and the programming language is
narrowed, and greater fluency for the developer is achieved.

However, as well as a ‘distance’ between problem and program language, there
is also a direction. Some higher-level languages are more fluent for particular prob-
lems—a source of near-constant conflict between devotees of functional programming
and object-oriented programming. A well-designed DSL targets a specific area with
the aim of representing the problem so closely that non-programmers are able to
use, read and comprehend the language, while programmers with an understanding
of the domain can do so with greater ease.

A major benefit of fluency is rapid development and testing cycles. Software
development is well known to consist of as much or more debugging than program-
ming [63], which is a reflection of the range of incorrect programs that can be created
by a language: a general-purpose development language has few limits on what can
be produced, intentionally or otherwise, while remaining syntactically valid. Since a
DSL is far more limited, invalid programs often cannot be expressed without using
invalid syntax, which can be easily identified.

4.1.2 Code Reuse in Evolutionary Computation
EC has a poor history of code reuse. It can be safely estimated that of the hundreds
of libraries written for one or more algorithms, as well as potentially thousands
of single-use applications, there is little evidence of code being used more than
once. Where there is evidence, which is rarely more than a brief reference in an
application paper, it typically appears in work by the same research group that
originally developed the code. It has been suggested that such a vast amount of code
has been produced for EC because most practitioners are computer scientists who
enjoy writing code or have had poor experiences using other people’s code [53, 88].
Given researchers’ perceptions that they are the “first to release code” for their
topic [88, p. 19], the associated belief that existing code is not helpful is somewhat
understandable. Another possibility is that some researchers may consider the use or
adaptation of someone else’s software for their own publications to be intellectually
dishonest or inappropriate.

The list of widely used libraries is disappointingly short: ECJ [60] (while techni-
cally a framework, rather than a library) is a clear leader with many users outside of
the research group that developed it. EO (Evolvable Objects) [42] and its extension
to parallel computing, ParadisEO [23], also see significant use. However, there is
little evidence that would support labelling other libraries as ‘popular’—words such
as ‘unmaintained,’ ‘ignored’ and ‘dead’ are far more accurate. This is unfortunate,

CHAPTER 4. ESDL 63

while (Pxover <= 0.9) do
Pmutation := 0.1;
while (Pmutation <= 0.2) do

init; // initialize population
call_EA; // run EA for one epoch
writeresult;
Pmutation := Pmutation + 0.01

end;
Pxover := Pxover + 0.05

end

Listing 4.1: Example PPCEA script for dynamically adjusting EA parameters (adapted from
[58]).

since many libraries contain well-designed, well-developed and well-tested code that
could accelerate development for many researchers.

Apart from libraries and frameworks, three other classes of relevant software are
workbenches, templating engines and DSLs. HeuristicLab [95] is a workbench, a
single application that provides the full algorithm development, design, test and
analysis workflow. Extensibility is available through a plugin system and a graphi-
cal designer is provided for designing algorithms using a model similar to (though
developed independently to) that in Chapter 3. However, as is common with work-
benches, interoperability and sharing of designs is difficult [35].

EASEA (EAsy Specification of Evolutionary Algorithms) [14] is described as
“a high-level language” but more closely resembles a template-based external DSL.
Implementations are provided by a user in C++ code for an evaluator and crossover
and mutation operators, while selection and replacement operators are chosen from
a list. Recent features added to EASEA include distributed and GPU-based parallel
processing [62]. The enforced algorithm structure and lack of flexibility in selectors
make EASEA a convenience for those who can work within it, but not a substitute
for those developing algorithms based on different structures.

PPCEA (Programmable Parameter Control for Evolutionary Algorithms) [58] is
a scripting language for actively controlling algorithm parameters, though it provides
little functionality for defining the algorithm itself. An example PPCEA script is
shown in Listing 4.1. PPCEA appears to have very little use even within its original
development group, where it has been rewritten [99] and later used as a test case
for a web-service approach to DSL implementation [57]. Examples of publications
using PPCEA for EC-related experiments could not be found.

EAML (Evolutionary Algorithm Modeling Language) [94] represented the main
breeding process of an algorithm in a portable and interoperable form based on
XML. However, it suffered from requiring a strict algorithm structure, as well as

CHAPTER 4. ESDL 64

<EAML standalone="true" project="bits">
<Code name="objfunc"><![CDATA[

double obj = ECPARAM(CBits, gene, size);
for (int i = 0; i < ECPARAM(CBits, gene, size); i++)

if (GETDATA(i) == 1) obj -= 1;
return obj;

]]></Code>
<Algorithm name="CBits" size="20" direction="minimize"

generations="100" optimum="0.0"
elitistRate="10%" operatorRate="90%">

<objective><Use ref="objfunc"/></objective>
<genome><BitString size="30" group="1"/></genome>
<selection><RouletteWheel/></selection>
<operator><Group><operators>

<Binary rate="90%" succRate="10%">
<OnePoint/>
<succUnary>

<PointIncrement min="0" max="1" step="1"/>
</succUnary>

</Binary>
<Unary rate="10%">
<PointIncrement min="0" max="1" step="1"/>

</Unary>
</operators></Group></operator>
<initial><RandomInitial min="0" max="1"/></initial>

</Algorithm>
</EAML>

Listing 4.2: Representation of an algorithm using EAML (adapted from [94]).

the common criticism of XML being better suited to machine parsing rather than
human editing [35]. An example algorithm is shown in Listing 4.2.

More recently, ECML (Evolutionary Computation Modeling Language) has been
proposed [6]. Based on UML, ECML generalises the representation of individuals in
an algorithm, rather than modelling the entire algorithm. The authors emphasise
that “ECML is not a domain-specific modeling language” in direct contradiction to
its name, which specifies both the domain and its purpose as a modelling language.
Meta-evolutionary algorithms (MEAs) are also proposed to provide a fixed algorith-
mic structure but use the operators specified by an ECML model. Although MEAs
can “dynamically adapt to changes in the specification,” this benefit is not unique
to ECML and could be implemented in any algorithm. MEAs as described in [6] are
limited to using one crossover operator and one mutation operator; combinations
that are more complex do not appear to be supported.

In summary, while DSLs are known to provide significant benefits in accurate
and fluent communication, particularly between non-programmer domain experts
and software developers, there are very few DSLs for EC. The suggestion put here is

CHAPTER 4. ESDL 65

that this is partly due to the lack of a unifying model and the associated algorithmic
segregation, even within libraries and frameworks, as well as a general inclination
amongst researchers to write their own code. A useful DSL should remove this seg-
mentation by allowing arbitrary composition of operators and supporting flexible
structures rather than attempting to provide a predefined set. The risk of misiden-
tification of such a language as too simple for practical use is a further challenge,
particularly by experts who are already capable of, and used to, implementing their
algorithms directly. The following section presents a design for an EC DSL based
on the model in Chapter 3, and hence with inherent support for flexible algorithms.

4.2 Describing algorithms with ESDL
This section describes Evolutionary System Definition Language (ESDL), a DSL
based on the unified model specified in Chapter 3. ESDL represents the structure
of an EA without including unnecessary clutter; solution representation, operators
and termination conditions are abstracted. This abstraction encourages greater
code reuse, since self-contained operators can be shared more easily than code with
tight internal coupling, and provides a structured form for presenting and publishing
algorithms.

Section 4.2.1 provides details about ESDL that, while not directly related to the
behaviour of any particular algorithm, are important for correct use and understand-
ing of the language. They are given before syntactical details, sections 4.2.2–4.2.4,
despite the potential for confusion due to lack of context, to provide a better un-
derstanding of the purpose and scope of ESDL.

A BNF-style grammar for ESDL is included in Appendix B. It may be used as
an easy way to understand the syntactic construction of ESDL, though it does not
describe any of the semantic behaviours and is ultimately not a substitute for the
descriptions in this chapter.

4.2.1 Basic Conventions
These conventions specify some of the fundamental rules used by ESDL with re-
gard to style and scope. Some of these deliberately limit the general applicability
of ESDL. They have been considered and tested thoroughly, either specifically for
ESDL or more generally, and are intended to keep ESDL focused on its primary
use: describing the algorithmic structure of evolutionary algorithms. Readers famil-
iar with other description or programming languages are likely to appreciate these
conventions on first reading, though the relevance of some may not become apparent
until later examples.

ESDL is plain text: no special characters or symbols are used and punctuation
is kept to a minimum. This makes writing and reading ESDL simpler, makes it

CHAPTER 4. ESDL 66

portable through media such as email, alleviates the need to translate for inclusion
in typesetting systems and reduces the potential for typing errors.

ESDL is case-insensitive: keywords, variables and group names consisting of
the same letters in different cases are treated as the same. As a convention, keywords
are written in uppercase and other terms in lowercase, though where alternative
formatting can be applied, the importance of casing to readability is reduced.

ESDL only has global scope: regardless of where in the code a name is declared
or referenced, it always resolves to the same element. This discourages the reuse of
names for different purposes, removing the need to consider the entire description
to determine behaviour and avoiding complicated scoping rules and syntax.

ESDL has implicit variable declarations: assigning a value is equivalent to
defining the variable. There is no need to list every name at the beginning of ESDL
code. Declaring the type of a variable is not necessary, since types can be inferred
from usage and are effectively limited to real numeric values by the nature of the
application.

ESDL has two data types: a variable is either a group or an opaque value
reference (see Section 5.2.1). Both types may be passed as parameter values, but
there is otherwise a clear delineation between where groups and non-groups may be
used. Individuals within groups are inaccessible within ESDL and are not subject
to this restriction, but rely on an assumption of compatible operators being avail-
able. Specifying provably type-safe algorithms is not the purpose of ESDL; a more
pragmatic approach is intended.

ESDL statements are end-of-line terminated: no semicolon or other termi-
nation character is required. However, if the last character on the line (before any
comment) is a backslash, the statement continues onto the following line.

ESDL has no control flow: conditional statements such as “if” and “while” do
not exist. This keeps the code easily understandable by reducing the complexity
and encourages designers to use abstractions for algorithmic variation. Subroutines
cannot be specified in ESDL, but ESDL may link to external functions that are
implemented in other languages.

ESDL has single-line comments: any text between a double-slash “//”, num-
ber sign “#” or semicolon “;” and the end of the line is ignored. Comments are
generally discouraged, with ESDL code intended to be readable without periph-
eral description. Text following a grave accent “ˋ” is also ignored by ESDL, but is
intended as a directive or pragma to an interpreter, analyser or compiler.

4.2.2 Composing Algorithms
Individuals are the fundamental element of an EA; their creation, evaluation and
use as sampling bias are central to an algorithm’s optimisation ability. Direct access

CHAPTER 4. ESDL 67

FROM population SELECT ...
FROM group1, group2 SELECT ...
FROM generator() SELECT ...

Listing 4.3: Examples of the FROM clause.

and control of isolated individuals is rarely necessary at a structural level. Rather,
it is the distribution of solution values and fitness within an entire group that is
useful, and individual manipulation can be abstracted into operators. As a result,
the operations with the greatest influence on the structure of an algorithm are stream
use and group creation.

A syntactical construct for creating and manipulating groups must be capable
of expressing the following six operations:

1. Create a group from a stream
2. Create a stream from a generator
3. Merge two or more streams
4. Partition a stream into one or more groups
5. Apply operators to streams
6. Join one or more streams

ESDL uses a FROM-SELECT statement to handle the first five of these operations, with
the sixth handled by a JOIN-INTO statement. This division allows the majority of
processing to be described using FROM-SELECT statements and JOIN-INTO is restricted
to performing exactly one task. Syntactically, the two statements are identical,
though combining them into a single set of keywords would obscure rather than
clarify intent.

A FROM-SELECT statement consists of three clauses: FROM, SELECT and USING. The
FROM clause is followed by the names of one or more groups or generators, separated by
commas. If more than one is specified, they are merged as described in Section 3.3.2,
resulting in a single stream. Listing 4.3 shows some example FROM clauses.

The SELECT clause is required and is followed by one or more group names. Group
declarations are implicit; there is no need to declare a group before its name appears
in a SELECT clause. Each name may be preceded by a size specifier—an integer,
variable or expression (see Section 4.2.3)—which partitions the stream as described
in Section 3.3.3; omitting the size implies that the remainder of the stream should be
taken for that group. If more than one group is specified, all but the last must have
a size specifier. The last group only needs a size specifier if the stream is infinite
or if the partitioning is relevant to the algorithm. Listing 4.4 shows some example
SELECT clauses. The FROM and SELECT clauses provide operations one through four.

The USING clause is optional. When omitted, groups are merged and partitioned
without modifying or reordering any individuals; when specified, USING is followed by

CHAPTER 4. ESDL 68

... SELECT (size*0.4) groupA, (size*0.6) groupB

... SELECT 1 single, rest USING ...

... SELECT N population USING ...

Listing 4.4: Examples of the SELECT clause.

groupA

groupB

operator1

operator2

Line 1

groupA

groupC

(merge)

operator1

Line 2

groupB

Figure 4.1: The FROM-SELECT statements from Listing 4.5 shown graphically.

1 FROM groupA SELECT groupB USING operator1, operator2
2 FROM groupA, groupB SELECT groupC USING operator1

Listing 4.5: Example FROM-SELECT statements with USING clauses.

a list of operators to apply to the stream created by the FROM clause. Operators are
fully enclosed components with a well-defined interface, as discussed in Section 3.3.1,
that produce an output stream from a merged input stream defined by the FROM

clause.
Each operator is applied in the order specified; the final stream is the one used

by the SELECT clause. Listing 4.5 shows some example FROM-SELECT statements with
USING clauses, and Figure 4.1 shows the same statements graphically to illustrate
the mapping to the model. The USING clause provides operation five.

The JOIN-INTO statement is fundamentally the same as FROM-SELECT: the clauses
are JOIN, INTO and USING and multiple source groups are joined as described in Sec-
tion 3.3.4 rather than merged. To simplify ESDL further, JOIN-INTO does not provide
the same operator chaining functionality as FROM-SELECT; allowing multiple operators
would require that the first is a joiner and subsequent operators are not, as well
as creating the possibility for the result of a JOIN-INTO statement being something
other than a group of joined individuals. One joiner may be specified after the
USING clause, or USING may be omitted, in which case individuals are joined as index-
associated pairs (as shown in the example in Figure 4.1). Listing 4.6 shows some
example JOIN-INTO statements.

Specifying a group as both a source and a destination in a single FROM-SELECT or
JOIN-INTO statement is permitted; the original group is used throughout the entire
statement. In effect, the group name is merely a reference that is updated to refer

CHAPTER 4. ESDL 69

JOIN groupA, groupB INTO groupC USING joiner
JOIN groupA, generator() INTO 50 groupB

Listing 4.6: Example JOIN-INTO statements.

to a newly created group after the statement completes. However, specifying a
single group as a destination multiple times in a single statement is not permitted,
since the only benefit of such a construct (fewer groups that are never referenced)
is outweighed by the ambiguity of multiple, equally valid, potential outcomes.

The contents of a group are never directly modified; replacing, rearranging or
changing individuals require the creation of entirely new groups. Most software
implementations of algorithms reuse allocated memory for performance, which is
only a secondary concern for ESDL; the primary purpose of communication with
humans is not well served by designing for performance, particularly where such an
optimisation is not necessarily beneficial for all applications.

4.2.3 Operators and Parameters
While specifying chains of operators and groups is sufficient to define an algorithm’s
structure, most operators can be adjusted and tuned by varying parameters. These
parameters are an essential part of a specification, as anyone who has attempted to
reconstruct an experiment without them will attest. Operators are less reusable if
tuning requires manual code changes, and parameter control requires operators that
can modify their behaviour during execution. In order to support these applications,
ESDL provides numeric variables, basic arithmetic expressions, external functions
and support for parameterised operators.

The USING clause introduces a list of operators, specified by name with an optional
parenthesised list of arguments. Unlike most common programming languages, ar-
gument lists are comma-separated lists of parameter names or “name=value” pairs.
The set of valid parameter names is defined by the operator and using a name not
in this set is an error, while names that are not specified take a default value also
given by the operator definition. Order is not important, since names are always
used and positional parameters are not supported. When no arguments are provided
to an operator, the parentheses are optional. All the examples in Listing 4.7 are
syntactically correct.

Parameter names specified without a value are given the value of the variable
with the same name, that is, line 3 in Listing 4.7 implies parameter=parameter. If
no such variable exists, the constant true is used. This allows the operator de-
signer to provide a set of parameters for which the user can specify one to select
the behaviour of the operator, for example, USING crossover(one_child) or USING

crossover(two_children).

CHAPTER 4. ESDL 70

1 ... USING an_operator
2 ... USING an_operator()
3 ... USING an_operator(parameter)
4 ... USING an_operator(parameter=value)
5 ... USING an_operator(parameter1=value1, parameter2=value2)

Listing 4.7: Valid operator specifications with and without arguments.

def adapt(old_rm, SR):
if SR < 0.2:

return old_rm * 1.1
else:

return old_rm * 0.9

Listing 4.8: Equation (4.1) as a Python function.

Variables and functions operate independently of groups and operators. Nam-
ing collisions are not permitted but otherwise there are no implicit interactions or
ordering dependencies between the two. This allows executable implementations to
distribute or reorder calculations depending on how they intend to obtain the best
performance. For example, an implementation may choose to execute group oper-
ators using a GPU and calculate variable values using a CPU. Provided the values
are synchronised correctly, the order of execution is flexible.

Variables are not explicitly typed and may be assigned values of any type sup-
ported by the underlying implementation. At a minimum, variables must be able
to store real numbers; any other types should be considered extensions that may
not be supported by all implementations. Integer division as used by many systems
programming languages1 is not used—all division operations produce the correct
mathematical result (within representational precision).

External functions allow calculations that are more complex than arithmetic to
be abstracted from ESDL. These functions may be written in any language sup-
ported by the implementation and described or shared in any suitable form, such as
a mathematical equation or a flowchart. Since ESDL does not include control flow,
external functions are the only mechanism by which decisions based on value com-
parisons can be made. For example, some variants of ES use parameter adaptation
based on whether a success rate is above or below a constant (typically 1/5). Such a
condition cannot be expressed as a simple expression, but is easily abstracted into
a function as in Listing 4.8.

1Where dividing two integer values produces an integer result that is rounded, typically towards
negative infinity or zero, such that 3/2 results in 1, rather than 1.5. This obscure behaviour provides
a performance improvement in many cases but is not appropriate for the communication objectives
of ESDL.

CHAPTER 4. ESDL 71

r’
m =

{
rm × 1.1 if SR < 0.2
rm × 0.9 if SR ≥ 0.2

(4.1)

1 SR = 0.5
2 Rm = 100
3 Rm = adapt(SR, old_rm=Rm)

Listing 4.9: Example invocation of the adapt function in Listing 4.8.

Functions take an argument list with the same format as operators, but always
require parentheses even if no arguments are provided. While operators must provide
default values for all parameters, function parameters may be required or optional.
As for operators, positional arguments are not supported. Listing 4.9 shows an
invocation of the function in Listing 4.8, with one argument specified explicitly, one
implicitly and in the opposite order to that specified in the definition. Note that SR

on line 3 of Listing 4.9 is the parameter name with an implicit value, rather than
the variable name with the parameter implied by position. Giving Rm on its own
would be an error, since there is no parameter with that name, and specifying old_rm

without a value would pass true, which is meaningless in this context.
Groups may be passed as arguments to a function, though they cannot be mod-

ified or returned. This is intended to allow specific intermediate statistics to be
calculated, for example, line 1 of Listing 4.9 should be replaced with a call to a func-
tion calculating the success rate from the current population and offspring groups.
Statistical observations that do not affect the algorithm’s behaviour, such as mean
and maximum fitness, are best handled using the YIELD statement described in Sec-
tion 4.3.2.

4.2.4 Evaluating Individuals
As discussed in Section 2.3, the purpose of an EA is to optimise a set of values.2 In
most simple cases, there is one problem used throughout the algorithm; any time
fitness needs to be evaluated this default evaluator can be used. Default evaluators
are not specified as part of an ESDL algorithm, since this would reduce the generality
of the specification by including information that does not define the algorithm.
(For example, GA does not become a different algorithm when applied to a different
benchmark problem.) Associating a problem with an algorithm description creates
a specific experiment.

However, in some algorithms, the components of a problem are often necessary
parts of the algorithm description. For example, co-evolutionary systems handle

2As was also discussed, optimisation is not the only application for EAs. However, most appli-
cations can conveniently be represented as optimisation problems, and those that cannot are not
the focus of ESDL (nor are we aware of any current EA that applies to non-optimisable problems).

CHAPTER 4. ESDL 72

EVALUATE population USING evaluator
EVALUATE parents1, parents2 USING evaluator(parameter=value)
EVAL population USING dynamic_evaluator(time=t)
EVAL population

Listing 4.10: Example evaluator specification with the EVALUATE-USING statement.

EVAL population USING evaluator(time=t)
t = t + 1
FROM population SELECT N parents USING best

Listing 4.11: Potentially ambiguous use of a parameterised evaluator.

credit assignment by using multiple evaluators (as described in Section 3.3.4) and
dynamic problems require the evaluator to change on each iteration. To support
these cases, an ESDL statement is necessary to specify an evaluator as part of an
algorithm.

A group’s evaluator is changed using the EVALUATE statement. Conceptually, the
statement may be interpreted as performing the evaluation immediately, as well as
changing the association, though immediate evaluation is not strictly required. Eval-
uator associations propagate from the first source group in FROM-SELECT statements
to each of the destination groups. There is no propagation in JOIN-INTO statements,
as the resulting group contains individuals of a different type and the likelihood of
the same evaluator being useful is low.

An EVALUATE clause (which may be abbreviated to EVAL) is followed by a list of
group names and a USING clause, which is followed by a single evaluator, specified
identically to an operator. Omitting the USING clause implies that the default eval-
uator should be associated with the groups. Listing 4.10 shows valid examples of
EVALUATE statements.

Lazy evaluation is a convenient mechanism for reducing computational require-
ments. An EVALUATE statement creates the association with the evaluator, but can
defer the computation until the group or individual is used in a context that requires
the fitness. Whether the evaluation is lazy at the group or individual level depends
on the implementation: lazy individual evaluation is likely to result in many individ-
uals never being evaluated, while parallel implementations may compute fitnesses
for an entire group more efficiently than selecting individual members. In either
case, this is a merely a performance enhancement and implementations that evalu-
ate fitness immediately at the EVALUATE statement fulfil the requirement that fitness
is available when needed; any alternative approach must appear to have done the
same.

CHAPTER 4. ESDL 73

t = t + 1
EVAL population USING evaluator(time=t)
FROM population SELECT N parents USING best

Listing 4.12: Unambiguous use of an evaluator that is parameterised over time.

1 JOIN groupA, groupB INTO groupC
2 EVAL groupC USING joined_evaluator
3 EVAL groupA, groupB USING assignment(source=groupC)

Listing 4.13: Using a credit assignment evaluator with joined individuals.

JOIN groupA, groupB INTO groupC
EVAL groupC USING joined_evaluator
EVAL groupA USING assignment(source=groupC)
EVAL groupB USING assignment(source=groupC)

Listing 4.14: Potentially incorrect use of credit assignment where groupA and groupB share
individuals.

Dynamic evaluators are those that do not obviously follow the ‘one fitness per
individual per evaluator’ constraint by allowing successive evaluations to produce
different results for the same individual. In order to meet this requirement, the
evaluator must be parameterised, such that changing the parameter changes the
identity of the evaluator. Changing the time implies a potential change to the
fitness of every individual; reusing a given time should reproduce the earlier results.
‘Noisy’ evaluators that include a purely random component are unlikely to adhere to
this requirement, though since the pseudo-random number generators used for most
simulations are deterministic for a given seed it is possible to produce a conforming
noisy evaluator. Since the new evaluator is distinct from the previous one, the
EVALUATE statement is necessary for associating it with groups.

Listing 4.11 shows an incorrect, or at least unclear, use of a dynamic evaluator.
The argument time is passed the value of t at the EVALUATE statement; changing
t afterwards does not affect the evaluator or the fitness of population until the
next iteration. Listing 4.12 correctly reassociates population with an evaluator after
updating the parameter. Reassociating evaluators before critical operations ensures
correctness and removes the need for readers to trace propagation.

A joined individual can be evaluated and have a fitness that is independent from
that of its component individuals. Evaluators do not propagate through JOIN-INTO

statements, so evaluating a group of joined individuals requires an explicit EVALUATE

statement. An evaluator for a joined individual cannot assign fitnesses directly
to the component individuals; they need to be separately evaluated and have due
credit assigned. Listing 4.13 shows an example of joining two groups, evaluating

CHAPTER 4. ESDL 74

JOIN groupA, groupB INTO groupC
EVAL groupC USING joined_evaluator
EVAL groupA USING assignment(source=groupC, component=1)
EVAL groupB USING assignment(source=groupC, component=2)

Listing 4.15: Assigning credit based on the position within the joined individual.

with joined_evaluator and assigning fitness values to the original individuals using
assignment. The joined individuals are passed to the credit assignment evaluator as
a parameter on line 3. Different evaluators may be used for groupA and groupB to
assign credit independently.

One potential complication appears when an individual appears in multiple
groups; in Listing 4.13, two identical individuals in groupA and groupB would be
associated with a single evaluator. The ‘one fitness per individual per evaluator’
rule indicates that despite belonging to different groups and being used differently
in the combined group, the fitness must be the same. Since the same value may
have greater utility in one of the first or second positions, the fitness should be
distinct. An intuitive correction is shown in Listing 4.14, though since evaluators
are identified by name and parameters, this snippet is identical to Listing 4.13. To
achieve the correct behaviour, an extra parameter can be added to the evaluator, as
shown in Listing 4.15, or two evaluators with different names may be used.

4.3 Structuring ESDL systems
The statements described by Section 4.2 constitute the two steps of the general EA
developed in Chapter 2. One or more FROM-SELECT statements with suitable operators
can improve a group of potential solutions. However, without repeating this gradual
improvement, they do not describe an EA and cannot represent existing algorithms.

This section continues to develop ESDL in order to support the iterative be-
haviour that is required for EAs (Section 4.3.1), and to allow observation and ter-
mination of a running algorithm (Section 4.3.2).

4.3.1 Algorithm Iteration
Section 3.3.8 introduced a clear delineation between the initialisation and iteration
phases of an algorithm. Initialisation occurs once and typically uses generators to
create the initial set of groups. Co-evolutionary algorithms may also require different
approaches to joining in the absence of fitness values. By isolating initialisation, the
iteration phase may then assume that all groups and variables are valid, which can
also be checked by static analysis. There may be some code duplication between
initialisation and iteration phases, particularly when evaluation involves joins and
credit assignment. However, ESDL systems are naturally terse, and very few lines of

CHAPTER 4. ESDL 75

Initialise
Iteration

block 1
Continue?

No

End

Yes

Iteration

block 𝑛

Selector

Figure 4.2: Structure of an ESDL system with multiple named iteration blocks.

FROM a_generator SELECT 100 population
EVAL population USING an_evaluator

BEGIN default
FROM population SELECT 100 parents USING a_selector
FROM parents SELECT offspring USING a_mutator
FROM population, offspring SELECT 100 parents USING best

END

BEGIN scatter
FROM population SELECT population USING major_mutation

END

Listing 4.16: ESDL system definition with an initialisation section and two iteration blocks.

code are likely to be reproduced. Necessary reproduction also encourages developers
to consider whether subtle changes should be made for the initialisation section, for
example, using a uniformly random selector rather than a fitness-based one.

Blocks are used to identify sequences of statements belonging to the initialisa-
tion section or an iteration section. The initialisation block is implicitly created
from the leading statements of an ESDL description; iteration blocks are explicitly
labelled with BEGIN and END statements. Multiple iteration blocks are permitted,
with precisely one being used for each iteration. ‘Calling’ between blocks is not pos-
sible; they are per-iteration control flow rather than subroutines. Figure 4.2 shows
the general structure of ESDL systems, including a selector for switching between
multiple iteration blocks.

An iteration block is started by a BEGIN statement followed by the block name.
Names follow the same rules as variables and groups and cannot match any variable
or group name, primarily to avoid reader confusion. The first BEGIN statement indi-
cates the end of initialisation block; subsequent BEGIN statements are only permitted
immediately following the END statement that terminates the previous block. The
END keyword may be followed by any text; it is effectively a comment marker for the
remainder of the line. Listing 4.16 shows an example algorithm with two iteration
blocks: default and scatter.

CHAPTER 4. ESDL 76

i = 0
rate = 0.9
REPEAT (length)
FROM groupA SELECT groupA USING operator(rate, index=i)
i = i + 1
rate = rate - (0.5 / length)

END

Listing 4.17: Using a REPEAT block to perform a parameter sweep.

By default, each block is used in turn for each iteration in the order they are
specified, such that default would alternate with scatter every iteration. In most
cases, this does not lead to a useful algorithm, though it is convenient for testing
purposes. For actual algorithms, an external function selects which block to exe-
cute, the only constraints being that the block cannot be aborted partway through
or the iteration retried with a different block. By externalising this decision as a se-
lector, the difficulty of providing a general syntax or interface to support the range
of potential switching reasons is avoided. For example, blocks may be switched
based on some global or local statistic, after a certain number of iterations or af-
ter a predetermined number of minutes or seconds. Further, authors can choose to
present their switching strategy in any suitable form, such as a timeline or flowchart,
which may significantly improve the ease of understanding compared to a plain-text
notation. [26]

Many algorithms require repetition within each iteration. For example, SSGA
[31] typically repeats its iteration phase n times per “generation-equivalent” (iter-
ation), where n is the number of individuals in the main population. Rather than
treating each sub-iteration as a major step, a REPEAT block may be used to execute
a set of statements multiple times. The REPEAT clause is followed by an expression
specifying the number of repetitions; conditional loops are not supported. A REPEAT

block is closed with an END statement, with nesting levels determining whether the
END relates to a REPEAT block or an iteration block. Using a REPEAT block is equivalent
to reproducing the statements the number of times specified, with the advantages
that the repetition count may vary from iteration to iteration and no actual code
reproduction is necessary. Variables may be used to obtain a repetition index or
sweep parameters, as shown in Listing 4.17.

4.3.2 Statistics Collection and Termination
As discussed in Section 3.3.8, termination is an experimental concern with a wide
variety of options and combinations of criteria. Despite much work using iteration
count or a single individual’s fitness for termination, real-world applications may
prefer criteria based on actual elapsed time or fitness distributions. The reaction to

CHAPTER 4. ESDL 77

1 FROM random_real SELECT 100 population
2 YIELD population
3

4 BEGIN iteration
5 FROM population SELECT 100 parents USING uniform_random
6 FROM parents SELECT offspring USING mutate
7

8 FROM offspring, population SELECT 100 population USING best
9 YIELD offspring, population

10 END

Listing 4.18: Using the YIELD statement to identify groups for statistics collection.

any of these criteria may vary, from a signal that the algorithm has succeeded to an
automated restart or the execution of a different named block. With such a range
of options, both known and yet to be designed, it would not be helpful for ESDL to
specify a mechanism for termination or statistical analysis.

Instead, to support these scenarios, ESDL includes the YIELD statement. YIELD

acts as a tagging mechanism, indicating to an underlying framework that the spec-
ified group or groups are intended to be fully enumerated, evaluated and collated
for statistical analysis. This may be as simple as finding the maximum fitness value
or may involve a full diversity and distribution analysis; the design, and resulting
performance implications, is left to the user and the underlying framework. While
such analysis is based on the individuals in the group when it is yielded, the actual
calculations could be deferred or delegated to a separate system. For implementa-
tions running on distributed or heterogeneous hardware, this may remove the need
to copy large amounts of data unnecessarily.

The YIELD statement is followed immediately by one or more group names, sep-
arated by commas. No size specifiers, generators or streams are permitted. Similar
to “return” statements, which are common to many programming languages, the
groups listed are passed to a higher-level handler. However, YIELD has more in com-
mon with “print” statements, in that information is passed out but execution is not
interrupted.3 Groups that are not yielded are, in general, not available for checking
against termination conditions or statistical analysis. Listing 4.18 shows a simple
algorithm that includes two YIELD statements, at lines 2 and 9, which yield the
population and offspring groups. It is plausible that the underlying framework is
configured to test population for termination criteria and collect fitness distribution
information from both, though for a well-designed framework, this should be easily
reconfigurable according to preference.

3YIELD is most similar to the equivalently named statements in C# and Python, which are used
in iterators (coroutines) as continuable return statements.

CHAPTER 4. ESDL 78

Statistics collected by the underlying framework are not necessarily made avail-
able directly within the algorithm, though allowing external functions access to
group statistics may be convenient in some cases. In particular, block selectors (see
Section 4.3.1) could benefit from access to relevant metrics. While it may be conve-
nient to have statistical values present directly as variables in a system definition,
this would require a potentially restrictive interface across all ESDL implementa-
tions. Since externally specified operator and function implementations are already
framework specific, limiting access to within functions enables algorithms to take full
advantage of the features provided by a specific target framework without having
to compromise for portability.

4.4 Example ESDL Systems
The algorithms presented in this section are the same as described in Section 3.5.
Since the intent is to demonstrate complete descriptions of existing algorithms, a
complete description is necessary for comparison. The code given for each of these
algorithms in [12] is used as a reference.

Descriptions from the previous chapter have not been reproduced; rather, they
have been substituted by a level of textual description considered appropriate for
accompanying an ESDL system, as well as the pseudocode, equations or diagrams
required to specify operator behaviour. It is expected that most of the operators used
in this section would form part of a standard library and would not typically require
definition. However, they are included here as examples and as demonstration of the
sufficiency of describing and composing algorithm components. No attempt is made
to support or justify the design of the algorithms themselves, and so the examples
are shorter than the presentation of a new, novel algorithm.

4.4.1 Evolution Strategies
This ES instance is a (30 + 20) -ES with self-adaptive parameter control. Each
individual has two real-valued vectors of length two: one representing the solution
to the problem and the other being strategy parameters. The initial population of
30 individuals is created by selecting random values for solution vectors from the
interval [−5, 5) and strategy values from [0, 0.5).

From the population group, offspring is created by selection and mutation, is
then merged with population and reduced to become the next population. In the
mutation step, the n strategy parameters in →

σ are varied according to

σ
′

i = σie

(
2
√

1/n
)
(Ni1)+(1/2n)(Ni2)

and the n solution values in X are mutated according to

CHAPTER 4. ESDL 79

FROM random_indiv(length=2) SELECT 30 population
YIELD population

BEGIN iteration
FROM population SELECT 20 offspring USING best, es_mutate

FROM population, offspring SELECT 30 population USING best
YIELD population

END

Listing 4.19: ESDL definition for (30 + 20) -ES.

func random_indiv(length=10)
repeat forever:

solution and strategy = empty lists
repeat length times:

solution.append(random_uniform() × 10 − 5)
strategy.append(random_uniform() × 0.5)

yield (solution, strategy)

Listing 4.20: Pseudocode for generating ES individuals.

X
′

i = Xi + σiNi3

where i is each index of the vector and Nij is a normally distributed random value
that is reselected for each value of i or j. The best operator orders the source group
by descending fitness, such that a partition operator will select the fittest individuals
to survive to the next iteration.

The ESDL definition for this algorithm is given in Listing 4.19. Pseudocode
definitions for random_indiv and es_mutate are given in listings 4.20 and 4.21, respec-
tively.

4.4.2 Evolutionary Programming
This EP example represents each individual as a sequence of letters from A through
Z, storing each component as an integer between 0 and 25 (inclusive). An initial
population of 100 random individuals is created, and a variation is created every
iteration for each member of the population by randomly adding or subtracting 1 to
approximately half of the components. Listing 4.22 shows pseudocode for mutating
each individual; components are permitted to move outside of the valid range when
mutated [33]. Tournament selection is applied to both the variations and the original
individuals by comparing each to seven randomly selected others and ranking every
individual by how many individuals they are fitter than. A pseudocode function for

CHAPTER 4. ESDL 80

func es_mutate(source):
for each indiv in source:

n = length(indiv)
new_strategy and new_solution = empty lists
for each stddev and value in indiv’s strategy and solution:

n1 and n2 = different normally distributed random values
new_stddev = stddev × exp(n1 × sqrt(4÷n) + n2 ÷ (2×n))
new_value = value + new_stddev × random_normal()
new_strategy.append(new_stddev)
new_solution.append(new_value)

yield (new_solution, new_strategy)

Listing 4.21: Pseudocode for ES mutation.

func ep_mutate(source, step_size [default 1]):
for each indiv in source:

new_indiv = empty list
for each value in indiv:

new_value = value + {one of [step_size, −step_size, 0, 0] with equal probability}
new_indiv.append(new_value)

yield new_indiv

Listing 4.22: Single-step mutation for EP as pseudocode.

this selection is given in Listing 4.23. The generator is given in Listing 4.24 and the
ESDL definition is shown in Listing 4.25.

CHAPTER 4. ESDL 81

func tournament(source, k [default 5]):
results = empty list of individuals ordered by score

for each indiv in source:
pool = {k random selections from source}
score = 0
for each competitor in pool:

if fitness(indiv) > fitness(competitor):
score = score + 1

results.append(score, indiv)

return results ordered by score

Listing 4.23: Tournament selection as pseudocode.

func random_int(length, lowest [default 0], highest [default 100]):
repeat forever:

new_indiv = empty list
repeat length times:

new_indiv.append(random_integer(lowest, highest+1))
yield new_indiv

Listing 4.24: Integer-valued individual generation as pseudocode.

FROM random_int(length=8, lowest=0, highest=25) SELECT 100 population
YIELD population

BEGIN iteration
FROM population SELECT offspring USING ep_mutate(step_size=1)
FROM population, offspring SELECT 100 population USING tournament
YIELD population

END

Listing 4.25: ESDL definition for EP.

CHAPTER 4. ESDL 82

func binary_tournament(source):
repeat forever:

indivs = { 2 different random selections from source }
if fitness(indivs[0]) > fitness(indivs[1]):

yield indivs[0]
else:

yield indivs[1]

Listing 4.26: Binary tournament selector (with replacement) as pseudocode.

Parent 1

Parent 2 Child 2

Child 1

Figure 4.3: Diagrammatic representation of single-point crossover.

func crossover(source, per_pair_rate):
for each parent1 and parent2 in source:

cut = random_integer(1, length(parent1) − 2)

if random_probability() < per_pair_rate:
child1 = parent1[...cut] + parent2[cut...]
child2 = parent2[...cut] + parent1[cut...]

else:
child1 = parent1
child2 = parent2

yield child1 and child2

Listing 4.27: Single-point crossover operator as pseudocode.

4.4.3 Genetic Algorithms
GA uses a population of n individuals represented as binary strings. This example
uses strings of length 64, binary tournament selection as shown in Listing 4.26,
single-point recombination as shown in Figure 4.3 and Listing 4.27, and a mu-

tate_bitflip operator, shown in Listing 4.28, that inverts approximately one bit
in each individual. The ESDL definition is shown in Listing 4.29.

4.4.4 Differential Evolution
DE uses a population of fixed-size vectors of real values. From this population, each
vector, the “target,” is matched with three randomly selected others; a base

→
B and

two mutation vectors
→
P1 and

→
P2. These are used to create a mutant

→
M according

to (4.2), where F is a constant scaling factor, normally between 0.0 and 1.0. A trial

CHAPTER 4. ESDL 83

func mutate_bitflip(source, per_gene_rate):
for each indiv in source:

new_indiv = empty list
for each gene in indiv:

if random_probability() < per_gene_rate:
new_indiv.append(1 − gene)

else:
new_indiv.append(gene)

yield new_indiv

Listing 4.28: Point mutation operator as pseudocode.

FROM random_binary(length=64) SELECT (100) population
YIELD population

BEGIN generation
FROM population SELECT (100) parents USING binary_tournament
FROM parents SELECT population \

USING crossover(per_pair_rate=0.98, two_children), \
mutate_bitflip(per_gene_rate=1/64)

YIELD population
END

Listing 4.29: ESDL definition for GA.

vector is created by selecting components from the target and the mutant with equal
probability. If the trial vector is as fit as or fitter than the target, it is retained;
otherwise, it is discarded.

→
M=

→
B +F

(→
P1 −

→
P2

)
(4.2)

The random_tuples joiner creates an unbounded stream of joined individuals by
randomly selecting from each of the source groups; the distinct setting indicates that
repetitions are not permitted within each tuple. A mutate_de operator based on (4.2)
returns a stream of mutants. By joining rather than merging these with population,
the crossover_tuple operator (shown in Figure 4.4) can combine each mutant with
its target, rather than the individuals that are adjacent in each group. Finally,
joining the original population with trials and applying best_of_tuple performs a
comparison between the target and the trial, keeping whichever is more fit or the
first (from trials) if they are equal. The ESDL definition is given in Listing 4.30.

CHAPTER 4. ESDL 84

0.2214 -7.382 1.839

0.4302 -4.889 1.201

1.1041 -2.002

0.7905 -3.010

From

population

From

mutants

1.839 0.4302 -4.889 1.1041 -3.010
To

trials

Figure 4.4: Diagrammatic representation of uniform crossover selecting components from
each parent.

FROM random_real(length=3,lowest=-5,highest=5) SELECT 30 population
YIELD population

BEGIN generation
JOIN population, population, population INTO bases USING random_tuples(distinct)
FROM bases SELECT mutants USING mutate_de

JOIN population, mutants INTO parents
FROM parents SELECT trials USING crossover_tuple

JOIN trials, population INTO trial_target_pairs
FROM trial_target_pairs SELECT population USING best_of_tuple

YIELD population
END

Listing 4.30: ESDL definition for DE.

CHAPTER 4. ESDL 85

SubFunction

MulFunction

RealConstant

VariableX

AddFunction

VariableX

RealConstant

A × 𝑥 − 𝑥 + 𝐵

Figure 4.5: GP individual represented as a function tree.

4.4.5 Genetic Programming
Genetic Programming uses a tree-based structure to represent executable programs
as functional expressions. The programs are typically based on Lisp syntax, though
the available functions and terminals (either constants or externally provided vari-
ables) are language independent and problem specific. Here individuals are repre-
sented as a linked tree.

Each program contains a root node that is an instance of a function class, such
as those shown in Listing 4.31. The population is initialised from the random_-

program generator, shown in Listing 4.33, which produces trees like that shown in
Figure 4.5. (Note that random_program provides default values for each parameter, as
required.) Each generation, parents are selected using the same selector as for GA
(Section 4.4.3) and partitioned into three groups: one for crossover, one for mutation
and one for reproduction. After variation, the groups are merged back together to
form the next population.

Crossover selects a random function node in each tree of two individuals and
exchanges the branches beginning from that node. In order to maintain the depth
limit, nodes can be selected carefully or “pruned” by replacing nodes at the depth
limit with terminals. Mutation is similar; a random function node is selected in a
single individual and the entire branch beginning from that node is replaced. Rather
than coming from another individual, the replacement branch is randomly generated
as for the initial population.

Evaluation of GP individuals varies depending on the type of problem. Some
‘robot control’ problems use a set of commands as terminals and execute the program
many times to obtain a sequence of instructions, while expression generators provide
the values for one or more variables and evaluate the individual as a function tree.
The functions in Listing 4.33 are intended for arithmetic expressions; Listing 4.32
defines an evaluator that compares individuals against x3+x2+x+1 and Listing 4.34
shows the ESDL definition.

CHAPTER 4. ESDL 86

class AddFunction:
child_count = 2

def __init__(self, A, B):
self.A, self.B = A, B

def evaluate(self, **data):
return self.A.evaluate(**data) + self.B.evaluate(**data)

class VariableX:
child_count = 0

def evaluate(self, **data):
return data['x']

Listing 4.31: Two example GP nodes specified as Python classes.

def eval_expression(individual):
error_sum = 0.0
for _ in range(20):

x = random()
expected = x**3 + x**2 + x + 1
actual = individual.evaluate(x=x)
error_sum += (actual - expected) ** 2

Scale the error sum so that fitter values are larger (closer to one)
return 1.0 / (1.0 + error_sum)

Listing 4.32: Evaluator for comparing against x3 + x2 + x+ 1, specified in Python.

from random import random, choose
FUNCTIONS = [AddFunction, SubFunction, MulFunction, DivFunction]
TERMINALS = [RealConstant, VariableX]

def one_random_program(max_depth, terminal_prob):
'''Called recursively to create program trees.'''
if max_depth == 0 or random() < terminal_prob:

return choose(TERMINALS)()

func = choose(FUNCTIONS)
parameters = [one_random_program(max_depth-1, terminal_prob)

for _ in range(func.child_count)]
return func(*parameters)

def random_program(max_depth=10, terminal_prob=0.1):
'''Infinitely returns random programs.'''
while True:

yield Individual(one_random_program(max_depth, terminal_prob))

Listing 4.33: random_program generator specified in Python.

CHAPTER 4. ESDL 87

FROM random_program(max_depth=15) SELECT (size) population
max_depth = 7
YIELD population

BEGIN generation
FROM population SELECT (size) parents USING fitness_proportional
FROM parents SELECT (size*0.9) p1, (size*0.02) p2, p3

FROM p1 SELECT o1 USING crossover(max_depth)
FROM p2 SELECT o2 USING mutate(max_depth)

FROM o1, o2, p3 SELECT (size) population
YIELD population

END

Listing 4.34: ESDL definition for GP.

FROM random_binary(length=8) SELECT (100) population
YIELD population

BEGIN generation_equivalent
REPEAT 100

FROM population SELECT (2) parents, rest \
USING binary_tournament(without_replacement)

FROM parents SELECT offspring \
USING crossover(per_pair_rate=0.98, two_children), \

mutate_bitflip(per_gene_rate=1/64)
FROM offspring, rest SELECT population

END
YIELD population

END

Listing 4.35: ESDL definition for SSGA.

4.4.6 Steady-State Genetic Algorithms
SSGA uses operators that are nearly identical to GA (Section 4.4.3); only the ESDL
definition needs to be changed. The fitness_proportional selector has no_replace-

ment specified (implicitly; equivalent to passing true in this context), which selects
two distinct parents and stores the rest of the population into rest. After varia-
tion, rest is merged with offspring to produce the next population. The iteration
block has been renamed from generation to generation_equivalent to reflect standard
SSGA terminology, though this has no effect on the behaviour.

The updated ESDL system for SSGA is shown in Listing 4.35, using the fitness_-

proportional operator from Listing 4.26.

CHAPTER 4. ESDL 88

4.4.7 Particle Swarm Optimisation
As discussed in Section 3.5.7, despite not being considered a traditional EA, PSO
can be represented using the streams and operator model and ESDL. Each individual
contains two real-valued vectors of equal length, where one represents the position
of the particle and the other the velocity. A population of individuals, known as
the swarm, is maintained. Alongside this swarm, a second group of individuals called
p_bests contains the best locations seen by the swarm member at the matching
index.

Every iteration, the velocity of each particle is updated according to the combi-
nation of some random values, the relative location of the particle’s p_bests member
and the best location currently known by any particle in a predefined neighbour-
hood. Here, the neighbourhood includes all particles, as in [12], and the velocity is
updated according to:

v
′

id = vid + c1r1 (pid − xid) + c2r2 (pgd − xid)

where xid and vid are the position and velocity of particle i in dimension d, pid is
the best position known by particle i and pgd is the best position known by any
neighbour. c1 and c2 are constant learning factors and are assumed here to both be
2. r1 and r2 are independent random values between 0.0 and 1.0, resampled for each
dimension of each individual. If the updated velocities exceed the specified limit,
they are replaced with that limit.

After updating the velocity, positions are updated assuming a time delta of one;
in effect, the current velocity vector of each particle is added to the position vector:

x
′

id = xid + vid

When an updated position is beyond the limits of the search space, it is moved back
into the search space and the velocity in the same dimension is reversed, as if the
particle bounced off a wall.

Pseudocode for the random_particle generator is given in Listing 4.36 and the
ESDL definition is shown in Listing 4.37.

4.5 Chapter Summary
This chapter has described Evolutionary System Definition Language (ESDL), a
domain-specific language for describing EAs based on the model in Chapter 3. ESDL
encourages a structured approach to EAs by requiring a clear separation between
the implementation of each operator and the overall composition of the algorithm.
The loosely-coupled designs promoted by this approach are more likely to result in

CHAPTER 4. ESDL 89

func random_particle(length, low_limit [default 0], high_limit [default 1]):
repeat forever:

new_velocity = list()
new_position = list()
repeat length times:

new_velocity.append(0)
new_position.append(random_uniform(low_limit, high_limit))

yield create_particle(new_position, new_velocity)

Listing 4.36: Generator definition for PSO as pseudocode.

FROM random_particle(length=2, low_limit=-5, high_limit=5) SELECT 50 swarm
FROM swarm SELECT p_bests
YIELD swarm

BEGIN iteration
FROM swarm SELECT 1 g_best USING best
JOIN swarm, p_bests INTO particles_with_pbest
FROM particles_with_pbest SELECT swarm USING \

update_velocity(global_best=g_best, low_limit=-100, high_limit=100), \
update_position(low_limit=-5, high_limit=5, bounce)

YIELD swarm
END

Listing 4.37: ESDL definition for PSO.

easily reusable components that can be shared between different algorithms, which
was noted as an issue in Chapter 2. Operator interfaces and their interactions with
groups, streams and individuals are strictly defined but sufficiently general to not
restrict those who are creating new algorithms.

DSLs are known to be beneficial for reducing the complexity of software models,
often to the point where domain experts who are not programmers can develop using
them. ESDL is intentionally designed as a communication tool, with an emphasis on
clear and correct presentation and ease of use. A clear separation exists between the
model of EAs and ESDL, allowing the abstraction and the specification language to
be used independently if desired. Taken together, ESDL and the model provide a
concise and eloquent approach to designing, implementing and sharing algorithms,
offering the guidance that Chapter 2 noted as lacking.

Existing algorithms can be described with ESDL, often more succinctly than in
other forms because many aspects are already defined. In conjunction with operators
specified separately from the ESDL definition, a range of EAs and similar algorithms
can be specified concisely and unambiguously. The examples in this chapter included
Genetic Algorithms, Differential Evolution and Particle Swarm Optimisation.

CHAPTER 4. ESDL 90

Despite the focus on presentation, ESDL is suitable for compilation into an exe-
cutable language. Chapter 5 discusses many of the aspects related to implementing
an ESDL system or creating a compiler to do so automatically. Chapter 6 dis-
cusses ESDL’s application as a tool for designing, sharing, evaluating and testing
algorithms, as well as an actual implementation of a framework that uses ESDL to
compose algorithms from an operator library.

91

Chapter 5

Execution

The previous chapter presented ESDL, a language for describing the com-
position of EAs. One of the significant benefits of ESDL is independence
from conventional programming languages. However, without the abil-
ity to consistently interpret the language, it is impossible to guarantee
the behaviour of any algorithm specified using it. ESDL is intended to
disambiguate algorithm descriptions, and hence guaranteed behaviour
is necessary. This chapter reviews prior examples of implementing EA
software, describes the intended behavioural interpretation of ESDL and
discusses specific implementation concerns, such as data types, memory
model and sequencing. These models are necessary to ensure that im-
plementations of ESDL produce equivalent results while not preventing
frameworks from providing distinguishing functionality.

5.1 Evolutionary Algorithm Software
As discussed in Section 2.2.3, the majority of EA research appears to use custom-
written software. Most researchers in the field have programming skills and the
confidence to produce working code. Unfortunately, code that is written for a par-
ticular publication is normally not released to the public, making a survey of the
software in use difficult to conduct. Software that is released typically consists of
libraries and frameworks; that is, software deliberately developed to be shared and
used by others. When intended for reuse, the structure and design of software can
be very different to prototypes that are intended for only a single use. This section
briefly reviews a selection of easily found1 EA libraries and frameworks to identify
common architectural features.

1Within the first 10 results when searching for “evolutionary algorithm software” or “evolu-
tionary algorithm library” with popular search engines, as well as some that have been heavily
promoted at various events during 2010–2012.

CHAPTER 5. EXECUTION 92

Table 5.1: Frameworks and libraries for implementing EAs.
Name Language URL

a AForge.Genetic C# library code.google.com/p/
aforge/source/browse

b Algorithm::Evolutionary Perl framework opeal.sourceforge.net
c Distributed Evolutionary

Algorithms in Python
Python library code.google.com/p/

deap
d EASEA C++ framework lsiit.u-strasbg.fr/

easea
e ECJ Java framework cs.gmu.edu/~eclab/

projects/ecj
f Evo C# library evo.codeplex.com
g Evolving Objects (EO) C++ library eodev.sourceforge.net
h Genetic Algorithm Utility

Library (GAUL)
C++ library gaul.sourceforge.net

i HeuristicLab C# framework dev.heuristiclab.com
j Java Genetic Algorithms

Package (JGAP)
Java library jgap.sourceforge.net

k stupidalgorithm C++ framework code.google.com/p/
stupidalgorithm

l Watchmaker Java library watchmaker.uncommons.
org

Twelve software packages were reviewed, listed in Table 5.1, consisting of a mix-
ture of libraries and frameworks in a range of implementation languages. Here, as in
in Section 4.1, a library is defined as a collection of code (typically objects in object-
oriented languages) that cannot be used as an entire application without writing
more code, while a framework can be configured and executed without the user nec-
essarily having to create a new program. All of the frameworks include or require
libraries, though not all of them allow these libraries to be used independently.

All of the reviewed software packages constitute component frameworks, that is,
they are each a library of components, a software architecture based around these
components and some form of “glue” for connecting components and allowing data
transfer [68]. Every package is written using object-oriented principles, typically,
though not universally, representing algorithms and various operators as distinct
classes. The type of glue and communication protocols also differ between imple-
mentations, encompassing code-only approaches, configuration files, drag-and-drop
design, explicit data passing and implicit shared scopes. However, the general no-
tion of components as “self-contained configurable entities which can be composed
to build an application” exists throughout [61, p. 25].

From Table 5.1, packages f, h and k appear to be unmaintained, while a has
not been updated recently despite the wider library it belongs to being under active

code.google.com/p/aforge/source/browse
code.google.com/p/aforge/source/browse
opeal.sourceforge.net
code.google.com/p/deap
code.google.com/p/deap
lsiit.u-strasbg.fr/easea
lsiit.u-strasbg.fr/easea
cs.gmu.edu/~eclab/projects/ecj
cs.gmu.edu/~eclab/projects/ecj
evo.codeplex.com
eodev.sourceforge.net
gaul.sourceforge.net
dev.heuristiclab.com
jgap.sourceforge.net
code.google.com/p/stupidalgorithm
code.google.com/p/stupidalgorithm
watchmaker.uncommons.org
watchmaker.uncommons.org

CHAPTER 5. EXECUTION 93

development. Apart from framework d, none of the implementations listed has any
form of compatibility with the others; taking an experiment from one to another
requires a complete re-implementation. Framework d uses a separate library, rather
than including its own, and generates code for library g. However, the compilation
step is necessary; source code is not directly interchangeable.

Each package uses an architecture that can be said to follow either a population-
centric (a, d, e, h, j) or an algorithm-centric (b, c, f, g, i, k, l) model. Population-
centric models embed knowledge of the evolutionary process (selection, variation
operators and rates) into the population—the group of individuals ‘knows’ how to
evolve itself. In code, this may look like population.mutate_ga(). Algorithm-centric
models treat groups of individuals as data structures with no, or few, EA-specific
behaviours; an algorithm class ‘knows’ how to evolve any population that is pro-
vided. In code, this would appear as mutate_ga(population). The algorithm-centric
approach appears to provide a better separation of concerns, since these opera-
tions are not strictly properties of the groups, though it could limit the range of
data structures that are usable as populations. In practice, the difference between
population-centric and algorithm-centric is largely conceptual and affects the loca-
tion of code rather than its behaviour.

Apart from h and k, all of the libraries allow individuals of arbitrary type if
variation operators are available (h and k require complete algorithm implementa-
tions for new types). The static language implementations provide abstract classes
or use templates/generics, while the dynamic languages either test for particular
object members (b, in Perl) or assume the user has provided suitable types (c, in
Python). For the algorithm-centric implementations, operators are specified as part
of the same configuration as the individual representation or generator, simplifying
the task of ensuring the types are matched. None of the reviewed software appeared
to provide methods to select compatible operators automatically, though framework
i limits the list of operators shown in its user interface to those that support the
selected representation.

Operator specifications differ significantly between the various implementations.
Since the choice and combination of operators distinguishes each EA, it is worth
investigating and comparing the approaches and interactions of the packages in
detail.

Libraries a, f and h all provide fixed algorithms with one or more substitutable
operators. In order to change an algorithm structure, such as the order in which
operators are applied, the user must define a new population or algorithm class.
All three of these libraries are inactive, probably indicating there is little interest in
software that does not easily allow algorithms to differ from predefined structures.

CHAPTER 5. EXECUTION 94

Framework d uses a fixed structure but requires users to implement each variation
operator, while a fixed list of selectors is provided for before and after variation.

Packages b, g, j and l use partially fixed algorithm classes, allowing users to
define a wider variety of algorithms without resorting to library-level programming.
One or two selection operators may be specified, which are applied before and/or
after variation. Variation is performed by applying operators from a user-provided
list to the selected individuals. The user can include any operators in this list in
any order, for example, applying mutation prior to crossover. Libraries g and l
allow considerable complexity in the operator list through aggregation operators
that combine multiple variation operators and select one to apply based on relative
probabilities. Packages b and j could also implement similar operators, though they
do not appear to include any.

Library c provides a number of basic algorithms, but also allows arbitrary algo-
rithms to be coded using the operators directly, rather than having to implement
a new algorithm class. Library k is a collection of fixed algorithms; any changes
beyond parameter values require the user create a new class.

Frameworks e and i support arbitrary operator networks, including selection and
variation stages, as well as complete algorithms. Arbitrary connections allow algo-
rithms to use multiple selection operators with separate variation operators for each,
permitting the creation of practically any imaginable algorithm. However, the cost
associated with arbitrary networks is the complexity of configuration. Framework e,
the most mature package reviewed, uses plain-text configuration files based around
the variation of “subpopulations” through “breeding pipelines”—effectively equiva-
lent to the groups and operators as defined in Chapter 3. Listing 5.1 shows a partial
parameter file for implementing a simple GA.

Such a description format allows for very precise control over the combination of
operators in an algorithm, though the verbosity produces lengthy parameter files.
There are mechanisms for including parameters from other files, although these often
obscure the actual settings in use as much as simplifying configuration. Nonetheless,
of all the software packages reviewed, it has been most cited by other researchers.

Framework i is completely GUI-based and all configuration is performed in a
drag-drop environment. However, as with framework e, the flexibility leads to com-
plicated operator graphs; Figure 5.1 shows the complete graph for a simple GA,
including termination conditions. Rather than representing a simple flow, the graph
is interpreted as a tree with a single (conditional) cycle. This representation is dif-
ferent from the typically linear algorithm styles, but can simplify parallel or partial
execution.

CHAPTER 5. EXECUTION 95

pop.subpops = 1
pop.subpop.0 = ec.Subpopulation

pop.subpop.0.size = 10
pop.subpop.0.duplicate-retries = 0
pop.subpop.0.species = ec.vector.VectorSpecies

pop.subpop.0.species.fitness = ec.simple.SimpleFitness
pop.subpop.0.species.ind = ec.vector.BitVectorIndividual

pop.subpop.0.species.genome-size = 20
pop.subpop.0.species.crossover-type = one
pop.subpop.0.species.crossover-prob = 1.0
pop.subpop.0.species.mutation-prob = 0.01

pop.subpop.0.species.pipe = ec.vector.breed.VectorMutationPipeline
pop.subpop.0.species.pipe.source.0 = ec.vector.breed.VectorCrossoverPipeline
pop.subpop.0.species.pipe.source.0.source.0 = ec.select.TournamentSelection
pop.subpop.0.species.pipe.source.0.source.1 = ec.select.TournamentSelection

select.tournament.size = 2

Listing 5.1: Partial GA configuration for framework e (ECJ).

CH
APTER

5.
EXECUTIO

N
96

Figure 5.1: An operator graph from framework i (HeuristicLab) for a simple GA.

CHAPTER 5. EXECUTION 97

A second architectural concern is how data is shared within the algorithm, par-
ticularly with respect to collections of individuals. The primary distinction between
data passing approaches is whether they are implicit or specified explicitly. Explicit
approaches require the designer manually connect the output of one operator to
the input of the next—such as storing a value returned from a function and later
specifying it as an argument. Implicit approaches allow operators to access shared
data storage, similar to a global variable though, in such a constrained environment,
without the usual shortcomings. From the point of view of the operator, data may
be provided as one individual (or enough to produce one result), a group or a refer-
ence to the group in shared storage. When an entire group is available, the operator
may be able to modify the individuals in place rather than having to create copies.

All of the reviewed packages apart from a, d and k define operators as indepen-
dent components. Packages a and d use member functions on the individual type
while k uses methods on the algorithm type. Packages a, b, d, g, h and i explicitly
provide individuals one (or more, for sexual operators) at a time to variation op-
erators while the other six provide the entire group; selectors are always provided
random access to the entire group. Implementations that provide the entire group
use the same operator interface regardless of arity; those packages passing individ-
uals separately use different method signatures or interfaces for asexual and sexual
operators.

Frameworks e and i have shared scopes: operator connections are defined in the
configuration and used at runtime to retrieve and store groups. Shared scopes allow
connections to be specified using late bound names; however, issues of immutability,
synchronisation and sequencing are exacerbated when separate components may
have aliased access to the same data. Framework e mitigates these issues within the
provided algorithm implementations, using global threading parameters to subdivide
and schedule the required work, ensuring that operator instances use separate data.
Framework i uses a unified hierarchical architecture to represent groups, individuals
and their properties; a “sub-scope” is created for each individual. This allows the
algorithm controller to manage the data each operator can access.

Individual and group immutability varies throughout, and within, the reviewed
implementations. Packages a, c, f, h, j, k and l prevent individuals from modifica-
tion by convention, either providing operators with mutable destinations or requiring
them to create clones. The other packages (b, d, e, g and i) perform modifications
directly on the individual and use explicit cloning to avoid corruption. Framework
e clearly defines the points where cloning occurs—selection operators create new
groups containing clones; variation operators directly modify this group—while li-
braries b and g require the algorithm implementer to define and follow their own
convention. Framework i includes configuration options to specify whether par-

CHAPTER 5. EXECUTION 98

Algorithm Population

Individuals Operators

Termination

Criteria

Algorithm Population

Selector

Individuals

Termination

Criteria

Algorithm Selector

Operators

Selector

Operators

Groups
Termination

Criteria

(a) (b)

(c) (d)

Algorithm

Selector

Termination

Criteria

Operators

Groups

Figure 5.2: Overview of the reviewed software architectures.

ticular selection operators create clones, since asexual variation operators directly
modify the source individuals.

Figure 5.2 shows a graphical summary of the observed architectures. Architec-
ture a represents a population-centric algorithm similar to that used in library a
and framework d: the population is created with a selection operator and specific
individual representation. Individuals in this case are directly associated with their
variation operators; the algorithm is no more than a loop that repeats until the ter-
mination criteria are met. Architecture b is similar but specifies variation operators
separately to the individual type; this is similar to packages e, h and j.

Architecture c is algorithm-centric, with operators specified independently and
access to groups of individuals is controlled by the algorithm. Packages b, c, f, g,
k and l follow this architecture, which allows very flexible operator combination
though normally requires the algorithm to be manually coded rather than specified
though simpler configuration formats. Architecture d is similar with the use of a
shared scope rather than passing groups through the algorithm. Framework i uses
this architecture to reduce coupling between operators.

The wide range of approaches to implementing EAs reflects the range of devel-
opers and developer backgrounds but makes it difficult to identify the best approach
objectively. Further, advances in hardware architectures change the suitability of
certain software designs. Most of the reviewed packages use mutable groups or in-
dividuals, which used to be an essential optimisation but is unnecessarily complex
with abundant memory or multiprocessing systems.

CHAPTER 5. EXECUTION 99

Blackboard Names

Population

Offspring

X

Y

Group storage

Variable storage

Figure 5.3: Blackboard with named references.

Section 5.2 describes the architecture intended for interpreting algorithms writ-
ten in ESDL in detail. Section 5.3 compares the decisions made in Section 5.2 to
those made by the software packages reviewed in this section.

5.2 Interpreting ESDL Systems
For proper and consistent interpretation of ESDL across multiple platforms, lan-
guages and frameworks, a number of areas relating to execution and architecture
must be specified. These include a memory model, detailing where data is stored
and how it may be accessed, a sequencing model, specifying the limits of overlapping
and out-of-order execution, and an extensibility model, formalising the approach by
which users can create and use their own components.

This section describes these models in general terms, avoiding references to spe-
cific programming languages, styles or patterns except to identify examples raised
in Section 5.1. Actual implementations should have the freedom to use approaches
that provide the best performance as long as the results are the same. Chapter 6
describes an actual implementation as an example of how these models influence
implementation decisions.

5.2.1 Memory Model
Similar to framework i from Section 5.1, data storage for ESDL systems consists of
a central repository or “blackboard” [41, p. 12], which is used for storage of groups
and variables referenced from the system. Items on the blackboard are accessed
by name using reference semantics; the names are independent of data and can be
re-bound to refer to a different storage location, as shown in Figure 5.3. There is no
nested or stack-based scoping mechanism as in general-purpose languages; rather,
all names on the blackboard and the data they refer to are available throughout the
ESDL definition. When external code is invoked with a group or variable reference,
the name is resolved before being passed; the name itself does not leak out from the
ESDL definition unless done deliberately, such as through a YIELD statement.

CHAPTER 5. EXECUTION 100

Conceptually, the blackboard is write-once, allowing all reads to assume that the
data is immutable. In practice, the contents may be changed or deleted provided
the sequencing guarantees described in Section 5.2.2 are met. With the restrictions
on blackboard accessibility, reference counting is sufficient memory management for
entire variables, groups or individuals, since reference cycles are impossible. Values
such as iteration and evaluation counts are not stored on the blackboard, though
implementations may choose to make them available within the ESDL system or
operators. Implementations are free to select a format to store data on the black-
board that is optimal for their particular platform. However, in order to achieve
correct and relatively efficient performance for the range of possible algorithms and
operators, a number of constraints must be considered.

Individuals are streamed between operators one at a time on a private channel;
only the receiver can read the individuals. Implementations can implement batch
transfers by passing individuals in groups up to or larger than the required size,
providing order is maintained. Operators may be connected using a publisher-
subscriber model, where the earlier operator in the chain pushes each individual to
the later, or a pull model, where the later operator requests the exact number of
individuals it requires. Both are equally valid, though it is also possible for other
models to be used. A pull model minimises processing but may be more difficult to
distribute across processors. Push models require special handling to allow infinite
streams. Selecting a performant streaming model is left to the implementation.

By design, most operators will assume that only sequential access to the source
group is possible. Since operators may be chained arbitrarily, there is no way to
guarantee or infer whether random access is available. Operators requiring random
access, such as those that reorder based on fitness, have to be able to cache the
incoming stream in order to handle all possible operator arrangements. The model
implementation should optimise for sequential access, while allowing random access
where necessary. Iterator (sometimes called enumerator or generator) and list or
array constructs common to many languages support this approach and are likely
to be familiar to operator developers.

Unlike streams, the contents of groups may be accessed more than once, which
generally requires that the group be stored rather than only existing temporarily
within a particular operation. When it can be determined that a group is used only
once and does not persist between iterations, there is no need to retain its contents;
otherwise, the source stream will need to be fully or partially enumerated and stored
on the blackboard. Any data structure is suitable for this purpose provided the
original order of the individuals is retained. The selected data structure may be of
fixed size if the number of individuals it contains can be determined. It is not always
possible to determine the final size of a stream before enumerating it, so some form

CHAPTER 5. EXECUTION 101

of dynamically expanding array is required, but since many algorithms depend on
groups being an expected size the final size or an upper-bound may be known or
can be calculated.

Non-group variables are not considered to have any type, or alternatively, to have
an opaque type supporting only assignment. ESDL does not require any operations
other than assignment and passing as an argument (nothing more than a special
case of assignment), which allows implementations and individual developers the
freedom to use any types for any purpose. For the sake of ESDL’s human readers,
once a name is used as a variable it may not be used for a group, and neither may a
group name be used as a variable. While in practice it may be possible to use groups
as variables or variable as groups, or even to treat them completely independently,
any language is easiest to understand when each word means precisely one thing.

It is expected that most implementations will be able to handle numbers and
basic arithmetic operators on variables despite the opaque types.2 Beyond basic
arithmetic, however, there are no defined operators or object models for non-group
variables. This significantly limits the complexity of the systems that are written
using ESDL, as well as simplifying the creation of compilers and interpreters—there
is no need to support object member functions, array indexing, function overloading
or type casting.

The purpose of the YIELD statement is to expose the contents of the blackboard
to external code. Ignoring sequencing, yielding an immutable group is simply a case
of providing a reference to the external handler. For implementations using mutable
groups, the contents of the group yielded must be synchronised with the YIELD

statement to ensure that if the group is modified, the changes are not observable
until another YIELD occurs. Yielding is equivalent to copying the group into publicly
accessible storage. Any analysis of the yielded group may occur immediately and
synchronously, or be deferred.

5.2.2 Sequence Model
While a correct sequencing model could simply insist that all operations be per-
formed atomically in the order specified in the ESDL definition, it is likely that
implementations will seek to distinguish themselves though improved execution per-
formance. To avoid limiting flexibility in this area, a higher complexity model is
defined to enable implementations to reorder and parallelise execution without pro-
ducing incorrect or inconsistent results. The remainder of this section considers the
flexibility available to multi-processor execution of EAs while maintaining correct
behaviour in the absence of strict sequential consistency.

2Omitting this as a strict requirement allows conforming implementations to be created for ma-
chines that cannot support it. While seemingly far-fetched, there are already distributed platforms
that do not easily allow centralised calculations in a performant manner.

CHAPTER 5. EXECUTION 102

Source Groups

Generator

Merge/Join Partition

Destination Groups

Other operators

Arguments

Figure 5.4: The general store operation.

Arguments

Group

Function Return Value

Figure 5.5: The general function operation.

Interactions between processors in a multi-processor system are considered to re-
late only to externally observable events, typically memory reads and writes. Here,
all possible interactions are isolated to the shared blackboard. With the reference
semantics described in Section 5.2.1 and the write-once nature of the blackboard,
as long as no named reference to the data exists until after it is initialised, there is
no possibility of accessing invalid values. In a practical implementation, synchro-
nising the deallocation of memory is necessary, though simple reference counting is
sufficient for unified memory architectures.

To simplify discussion, two executable operations are defined: stores and func-
tions. A store is an operator chain from a list of source groups to a set of destination
groups, as shown in Figure 5.4. A function represents a transformation from one or
more variables or groups to one variable using externally defined code, as shown in
Figure 5.5. Both of these operations produce results that are stored on the black-
board and hence have visible effects. Side effects are deliberately not accounted
for, since no statement in ESDL is capable of producing side effects and any other
varying state must therefore belong to external code. Allowing side effects is an im-
plementation specific decision; an implementation allowing them will require stricter
sequencing restrictions than those described here.

If destination groups and return values are stored on the blackboard before vari-
able names are updated, the need for explicit synchronisation on variable initiali-
sation is avoided. Further, recursive references are impossible, since an operation’s

CHAPTER 5. EXECUTION 103

FROM population SELECT 100 parents USING tournament(k), unique
YIELD parents
p = p1 + p2

FROM parents SELECT offspring1 USING crossover
rate = calculate_rate(prob=p, size=100)
FROM parents SELECT offspring2 USING mutate(per_indiv_rate=rate)

bias = calculate_bias(source=offspring2)
FROM offspring1, offspring2 SELECT 100 population \

USING biased_selection(bias)
YIELD population

Listing 5.2: ESDL system definition with dependencies between stores and functions.

Stores Blackboard Functions

Figure 5.6: Store and function operations interacting through a shared blackboard.

output cannot be used as its own input in the absence of a named reference.3 This
behaviour is similar to normal function calls, and though renaming semantics are
used rather than copy assignment, the result is identical.

Groups and variables may be accessed by both stores and functions, though com-
plete isolation between the two types of operation may be achieved with a shared
blackboard. This approach may be valuable where processors are dedicated or op-
timised for particular operations. The system in Listing 5.2 is shown in Figure 5.6
with a clear separation between stores and functions; implying the blackboard rather
than explicitly showing it results in the equivalent but simplified Figure 5.7.

Any operation with all inputs available may begin processing, which is trivial
to detect for functions but more complex for multi-operator stores. Operators that

3An operator or function implementation may use recursion, since they have full access to the
functionality of the underlying language. However, nothing specified using ESDL can produce
recursion directly.

CHAPTER 5. EXECUTION 104

Stores Functions

Figure 5.7: Simplified representation of Figure 5.6 that omits the blackboard.

Stores Functions Yielded

Figure 5.8: Yielding groups under an immutable memory model.

take parameters need to wait for their arguments before beginning, though previous
operators in the chain may begin processing in some circumstances. Forcing a store
to wait for all its dependencies before beginning is safest and likely to be efficient
enough, since most arguments will be constants or arithmetic expressions.

Depending on the memory model used, the YIELD and EVALUATE statements may
not require any sequencing consideration. For immutable groups and variables using
reference semantics, both statements may be treated declaratively, in effect, YIELD as
an access modifier and EVALUATE as a static property of the group, with notifications
for an asynchronous analysis or evaluation tasks. This case, shown in Figure 5.8,
effectively stores yielded groups in a separate memory location.

Alternatively, when not using immutable data structures, sequencing becomes a
significant concern. Rather than adjusting the storage location of yielded groups,
a copy must be made at some point after the group was last modified and before
it is next modified. Omitting the copy may be possible for implementations that

CHAPTER 5. EXECUTION 105

Stores Functions Yielded

Figure 5.9: Yielding groups by copying to publicly accessible memory.

perform all required analysis synchronously and do not need to retain the individuals
belonging to the group when yielded. Figure 5.9 shows the system from Listing 5.2
with explicit copies.

The EVALUATE statement changes the evaluator associated with one or more groups.
Depending on how eagerly fitness is evaluated, some evaluations may occur imme-
diately, though to support the propagation rules in Section 4.2.4, an association
between the group and the evaluator must be made. It is possible for evaluator as-
sociations to be determined statically, though parameter values may not always be
calculable at compile-time. Implementations are left to select their own strategy for
evaluations, since representation and the software architecture will provide tighter
constraints than portability requires; provided the associations are correct and the
fitness values are obtained from the correct evaluator, there is no need for further
sequencing restrictions.

5.2.3 Extensibility Model
Since it is impossible to predict the full range of components that may ever be
invented, a central aspect of the EA approach described in this work is to allow
users to introduce their own operators rather than being limited to a pre-defined list.
Any ESDL implementation that does not support this is ignoring the fundamental
purpose of ESDL and the associated model.

Given the current state of the field, where those who invent new operators are
typically programmers, there is no need to disguise the fact that an implementation
is based on a certain programming language. For example, a Java-based implemen-
tation can require that operators be written in Java (or use a Java-based adapter)
and follow a Java style coding convention. Practically all the programmatic flexi-

CHAPTER 5. EXECUTION 106

FROM generator(parameter=value) SELECT n group
FROM group SELECT group USING operator(parameter=value)
EVAL group USING evaluator(parameter=value)
return_value = function(parameter=value)

Listing 5.3: Example generator, operator, evaluator and function invocations in ESDL.

bility comes from operator implementations, so while the external interface should
be strictly defined, implementation guidelines are preferable to rules.

The definition of interfaces depends on the architecture of the implementation,
but regardless of architecture, there are three aspects that must exist: parameter
settings or updates, an input stream (or multiple streams for joiners) and an output
stream. Apart from operators, the other extensible elements are generators, evalua-
tors and functions. Each of these has parameters provided in the same manner (as
shown in Listing 5.3), though generators have an output stream with no input, eval-
uators continue to exist beyond the statement where they are invoked, and functions
have a return value but no streams.

As well as the interfaces to each of these extensible elements, some method of
loading or including them in a definition is necessary. In particular, implementations
that use operator metadata need to specify the format and provisioning method.
The following sections describe each extensible type in detail, though most of the
discussion is the same for each type and is covered in Section 5.2.3.1.

5.2.3.1 Operator Interface

Operators perform processing on streams of individuals. They have an implemented
behaviour, zero or more parameters, one input stream and one output stream.

Parameter updates provide new values from the blackboard (Section 5.2.1) to the
operator, potentially through a constructor or another method. Values may change
unpredictably in subsequent iterations, requiring updates to be explicitly specified.
Updates typically occur at the beginning of the store operation containing the oper-
ator, since there is no other way to reference an operator instance. Implementations
that reconstruct operators each iteration are unaffected by these changes, provided
the sequence model is respected, but those that use long-running operator instances
need to explicitly support updates.

As the data type of parameters is opaque within ESDL, some form of conver-
sion is likely to be necessary. At a minimum, users should not be concerned with
multiple numeric types: there is no need for an operator interface to demand inte-
gers rather than accept real values, though the implementation is able to use any
types that are supported by the language. Non-numeric variables are always consid-
ered implementation specific, and the interface specification must account for these

CHAPTER 5. EXECUTION 107

separately. Groups may be provided as read-only parameters, allowing access to
individuals by index, though the intent is for use as statistics or comparisons rather
than as a substitute for the input stream. Finally, parameters may be passed null

(or the synonym none) where either a group or variable is expected, indicating that
no value is intended. All parameters that expect groups must specify null as the
default value.

Parameters cannot be passed by modifiable reference; groups and values are
read-only on the blackboard and so should not be modified by external code.4 For
the most common case of numbers, pass by value is suitable, though groups may be
more efficiently passed by reference (directly to the storage space on the blackboard,
rather than to the updateable name). For languages that do not support parameter
names or passing arguments by name, a separate mapping is also required: a list of
the parameter names to expect in the ESDL definition and the position or register
to pass values in. Similarly, all operator parameters require default values, and
languages that do not intrinsically support defaults need metadata to specify the
values and code generation to provide missing arguments.

Input streams provide individuals in the order they were provided by the pre-
ceding operator. Whether they are obtained one at a time or in greater numbers
depends on the implementation; a push model is likely to provide one at a time,
while a pull model could retrieve exactly as many individuals are required. Regard-
less of the model, an operator should be able to request all available individuals
from a finite source stream, typically in order to use a data structure with random
access semantics (an array) or to sort or aggregate all individuals. Implementations
that provide an explicit mechanism for this action are better able to detect when an
infinitely long stream is used improperly and provide helpful feedback rather than
an out-of-memory error.

Output streams receive individuals sequentially from an operator. As with input
streams, individuals may be provided in blocks of one or more, as long as the order is
not modified. Output streams may be terminated, indicating a finite-length stream;
termination is communicated to the consuming operator and no further processing
should be performed by the producing operator. If the producer and consumer
disagree about rate, the implementation is responsible for caching individuals. For
example, if the consumer is requesting one individual at a time but the producer
returns two, the consumer will receive each of the two individuals on subsequent
requests. Dropping or duplicating individuals are not appropriate ways of handling
this scenario.

4Implementations may provide opaque data types that reference mutable data at their own risk,
both in terms of synchronisation and confusing developers and readers.

CHAPTER 5. EXECUTION 108

JOIN a, b INTO pairs USING tuples
JOIN a, b, c INTO triplets USING tuples

Listing 5.4: Use of a joiner that can handle a variable number of sources.

Streams are only conceptually realised as one-way pipes and implementations
may choose alternate representations, provided order is preserved and operators can
freely vary the resulting number of individuals. In a pull model, passing complete
arrays between operators is efficient, though in a push model this is likely to result
in some wasted computation. Depending on the architecture of the entire imple-
mentation, this wastage may allow faster execution overall. For example, working in
powers of two has efficiency benefits for many systems and algorithms, often enough
to outweigh the cost of padding.

5.2.3.2 Joiner Interface

Joiners are identical to operators but allow multiple input streams. Whereas a FROM-

SELECT statement concatenates each source before providing it to the first operator,
a JOIN-INTO statement passes each source stream independently. Further, while a
normal operator may be limited to homogenous groups, a joiner is expected to
handle groups containing different types of individuals, though the ability to join
different types arbitrarily depends on the available joiner implementations.

Depending on the underlying architecture and language, it may be possible to
write joiners that take an arbitrary number of source streams. However, many
languages do not allow this or complicate it so much it becomes unimplementable.
In these cases, implementations should use either a convention or metadata to allow
the ESDL description to use the same name regardless of joiner arity. For example,
each statement in Listing 5.4 may require two different tuples joiners—one to handle
two sources and the other for three—but it is not the ESDL developer’s responsibility
to resolve this in the definition.

5.2.3.3 Generator Interface

In terms of extensibility, generators are identical to operators without an input
stream. A generator continuously appends to its output stream, which is connected
to either another operator or a merge operator (Section 3.3.2). Once the consumer
indicates that it has finished producing its own output, the generator is no longer
required, but must otherwise continue to produce individuals forever. Repetitions
are permitted in the output of a generator.

Generators are only specified in the list of source groups in a FROM-SELECT or JOIN-

INTO statement, as shown in Listing 5.5. In a FROM-SELECT, the generator must appear
last, and because generators are always infinitely long, a size must be specified for

CHAPTER 5. EXECUTION 109

FROM generator(parameter=value) SELECT n group
FROM a, b, generator(parameter=value) SELECT n group

JOIN a, generator(), generator() INTO joined_group USING tuples
JOIN generator(), generator() INTO n joined_group USING tuples

Listing 5.5: Generator invocations in ESDL.

EVAL a USING evaluator
FROM a, b, c SELECT d
d is implicitly associated with evaluator
YIELD d

Listing 5.6: Evaluator propagation in ESDL.

each destination group. When using a JOIN-INTO statement, the joiner used will
determine the restrictions on whether a group size is necessary. For example, the
tuples joiner (defined in Section A.4.1) requires at least one finite group or a size
specifier on the destination.

5.2.3.4 Evaluator Interface

Evaluators are invoked similarly to operators, though they do not have the same
need to provide input and output streams. However, they do need to be persistent
and associable with groups, since evaluator propagation may result in an evaluator
being used for individuals that are not part of the groups originally specified in the
EVALUATE statement. For example, group a in Listing 5.6 is associated with evaluator.
The following FROM-SELECT means that group d is also evaluated with evaluator. If
the evaluation had occurred immediately and no association formed, the individuals
from groups b and c would not be evaluable at the YIELD statement, or may be
evaluated incorrectly.

5.2.3.5 Function Interface

Functions include a return value, which is of the same opaque type that can be
stored on the blackboard, but have no streams. The return value may be omitted,
though in the absence of side effects this results in a useless function. As mentioned
in Section 5.2.2, implementations that allow side effects need to specify a sequencing
model that accounts for functions with no return value.

As for operators (see Section 5.2.3.1), ESDL requires all parameters must have
names and be passable out of order. Functions are not required to have default
values for all parameters. Most general-purpose programming languages support
parameter names, many allow default parameters and some allow passing arguments
by names rather than position. For languages lacking one or more of these, including

CHAPTER 5. EXECUTION 110

the missing information as compile-time metadata coupled with code generation
can provide the functionality. Variable types are unnecessary in ESDL, but may
be relevant enough for an implementation that metadata and code generation also
need to include parameter types.

5.2.3.6 Loading

Most important to an extensibility model is the ease with which users can make
their own extensions available within an ESDL system. This is referred to variously
as including, importing or linking in general-purpose programming languages. In
ESDL, there is no equivalent mechanism, since various implementations are better
placed to choose an appropriate approach. The general guidance is away from
namespaces and toward a fine-grained inclusion mechanism that adds individual
operators as necessary.

Since the set of operators to be used is easily determined when parsing the ESDL
definition, the more difficult problem is mapping names to a specific implementation.
For a framework with a large collection of operators, a list of built-in operators is
likely to be included, though appending to this list, either permanently or for a
single experimental configuration, should be relatively straightforward. For an ESDL
compiler that statically links to extension implementations, location information
may need to be embedded in the source ESDL definition (in a pragma, Section 4.2.1)
or provided in a separate command file. ESDL has no dynamic loading mechanism,
so all names are fixed at compile time, even if they are not resolved until run-time.

5.2.4 Parsing and Compiling
As discussed in Chapter 4, ESDL is a language with restricted expressiveness and
a consistent, context-free grammar, which makes it suitable for automatic parsing.
The ability to use an ESDL description as configuration for a software framework al-
lows the description to be verified without requiring a translation to or from another
form.

The target framework or language for generated code does not significantly af-
fect the process of parsing ESDL. System definitions may be parsed into a sequence
of text-based tokens and converted into an abstract compilation model based on
the description in Chapter 4, the model in this chapter and the grammar given
in Appendix B. While different implementations will likely require their own com-
piler implementation, the general behaviour is as described in this section. esdlc,
the Python based compiler used for the implementation in Chapter 6, follows the
described sequence closely. Appendix C describes esdlc in detail.

Each ESDL statement is separated by line breaks, though a backslash may be
used to ignore a break and continue the statement onto the following line. White-
space acts as token separators but is ignored, while other punctuation characters

CHAPTER 5. EXECUTION 111

`include "Evaluator.h"
lowest = -100 # the lowest value
highest = 100 ; the highest value
FROM random_real(length=8, lowest, highest) SELECT n population
EVALUATE population USING evaluator()
YIELD population

BEGIN generation_equivalent
REPEAT n

FROM population SELECT 2 parents, rest \ // backslash before
USING fitness_proportional(no_replacement)

FROM parents SELECT offspring USING crossover, \
mutate(per_gene_rate=0.1)

FROM offspring, rest SELECT population
END
YIELD population

END

Listing 5.7: Example ESDL code.

(except for decimal points in numbers) are always one token each—there are no
multi-character operators. Symbol names are consecutive sequences of letters, digits
and underscores that begin with a letter or underscore, while numbers are consecu-
tive sequence of digits and one (optional) period. Comments extend from a pound
character (#), a semicolon (;) or double-slash (//) until the end of the line and do
not become tokens; any continuation backslash must appear prior to a comment.
Pragmas, on lines beginning with a backtick (grave accent, ˋ) are read as a single
token until the end of the line; the actual text is retained unmodified.

Following these tokenisation rules, the ESDL system shown in Listing 5.7 be-
comes the stream of tokens shown in Listing 5.8. At this stage, each token is literal
text except for EOS, which represents the end of each statement, and all text has
been converted to lowercase. Tokenising each line break as EOS and backslashes as
a literal token allows for simple filtering to handle line continuations.

Any form of parser may be used to produce a syntax tree from this token stream.
In general, the first symbol of each statement identifies the structure of the rest,
allowing a partial recursive-descent parser to provide efficient execution and more
precise error messages than a full shift-reduce parser, though the existence of infix
arithmetic equations in certain (known) locations may justify the use of a complex
parser. The parser in esdlc branches based on the first token of each statement and
parses the remainder of the statement linearly.

Regardless of the process used to derive the tree, the resulting structure should
match, or be convertible to, a list of blocks containing lists of statements, where
each statement is one tree. Listing 5.9 shows the parse tree for Listing 5.7 with

CHAPTER 5. EXECUTION 112

"`include \"Evaluator.h\"" EOS
"lowest" "=" "-" "100" EOS
"highest" "=" "100" EOS
"from" "random_real" "(" "length" "=" "8" "," "lowest" ","
"highest" ")" "select" "n" "population" EOS
"evaluate" "population" "using" "evaluator" "(" ")" EOS
"yield" "population" EOS
"begin" "generation_equivalent" EOS
"repeat" "n" EOS
"from" "population" "select" "2" "parents" "," "rest" "\" EOS
"using" "fitness_proportional" "(" "no_replacement" ")" EOS
"from" "parents" "select" "offspring" "using" "crossover"
"," "\" EOS "mutate" "(" "per_gene_rate" "=" "0.1" ")" EOS
"from" "offspring" "," "rest" "select" "population" EOS
"end" EOS
"yield" "population" EOS
"end" EOS

Listing 5.8: Token stream created for Listing 5.7.

Table 5.2: ESDL keywords.
Keyword Statement tree location Child node types
BEGIN Root Block name
EVAL/EVALUATE Root Groups, USING
FROM Root Groups, generators, SELECT, USING
JOIN Root Groups, INTO, USING
REPEAT Root Numeric expression
YIELD Root Groups
END None None
INTO Child of JOIN Sized groups
SELECT Child of FROM Sized groups
USING Child of FROM, JOIN or EVAL Operators or evaluators

each node’s children enclosed in braces. Square brackets are used for simplicity
when representing comma-separated lists, which may otherwise be represented as
recursive structures; for example, LIST{ 1, LIST{ 2, 3 } } rather than [1, 2, 3].
Lists containing one element retain the bracket in this listing.

All of the keywords available in ESDL are shown in Table 5.2, along with an
indication of where in a statement tree they may appear. Most are valid only as
the root of a statement: the first keyword. Apart from END, which indicates the end
of a BEGIN or REPEAT node’s statement list (and has already been removed from the
tree in Listing 5.9), the remainder indicate the beginning of another branch of their
parent node.

Where a child type is a plural in Table 5.2, a comma-separated list of at least
one item is required. USING nodes are optional, but all other children are mandatory.

CHAPTER 5. EXECUTION 113

BeginStmt{ (initialisation), [
PragmaStmt{`include "Evaluator.h"},
={ lowest, -{ 100 } }
={ highest, 100 }
FromStmt{ [random_real[={ length, 8 }, lowest, highest]],

SelectStmt{ [population{ n }] }
},
EvalStmt{ [population],

UsingStmt{ [evaluator] }
},
YieldStmt{ [population] }

]}

BeginStmt{ generation_equivalent, [
RepeatStmt{ n, [

FromStmt{ [population],
SelectStmt{ [parents{ 2 }, rest] },
UsingStmt{ [fitness_proportional[no_replacement]] }

},
FromStmt{ [parents],

SelectStmt{ [offspring] },
UsingStmt{ [crossover, mutate[={ per_gene_rate, 0.1 }]] }

},
FromStmt{ [offspring, rest],

SelectStmt{ [population] }
},

]},
YieldStmt{ [population] }

]}

Listing 5.9: Parse tree created for Listing 5.7.

CHAPTER 5. EXECUTION 114

A numeric expression is a constant number, variable name, function call or an ex-
pression constructed from these and arithmetic operators +, -, *, /, % (modulus) and
^ (power). Groups are represented as a single symbol token, sized groups as a single
symbol optionally preceded by a numeric expression, and generators as a symbol
token followed by a list of parameters (in effect, a function call). For example, the
token stream “groupA , groupB” could be either two groups or two sized groups,
while the stream “7 groupA , (n - 7) groupB” is two sized groups. The tokens
“1 groupA , genB ()” are invalid syntax, since sized groups and generators cannot
appear in the same list. Group names cannot be parenthesised because of ambiguity
with generators or functions in numeric expressions, and while parenthesising size
specifications assists with readability it is not required.

Any statement that does not begin with a root keyword from Table 5.2 is an
assignment or a function call. The parsing rules are identical for function calls as a
statement or as part of an expression, while assignments are parsed as a node with
the source expression and destination symbol as children. Implementations that do
not allow side effects in functions can safely ignore statements containing only a
function call with no assignment.

Function calls consist of a name followed by a parenthesised, comma-separated
list of arguments. The function name in the simplest case is a symbol, though
esdlc allows the symbol to be preceded by any expression and separated by a period
(in effect, the dot notation common to accessing object members in object-oriented
languages). The interpretation of this expression is implementation dependent, but
should represent either a scope resolution behaviour, where the preceding expression
disambiguates the last part of the name, or an implicit parameter behaviour, where
the result of the preceding expression is passed as part of the invocation (a ‘this’
parameter).

Argument lists are based on parameter names rather than positions. Each argu-
ment is a single symbol matching one of the parameter names, optionally followed
by an equals character and an expression for that argument. If the equals character
and expression are omitted, the value passed is a variable with a name matching
the parameter name or, if no matching variable exists, a Boolean true. Parsers may
choose to add a variable or literal reference immediately or to defer the decision to
the code generator, depending on whether the full set of available variables is known
while parsing.

Error detection after parsing can detect most misplaced or omitted nodes, un-
matched END statements, invalid arithmetic expressions and incompatible group spec-
ifications. Unused, uninitialised and misused variables cannot be detected without
introducing a symbol table. Depending on the code generation to be performed,
there may be opportunities to detect these and other violations later in the process.

CHAPTER 5. EXECUTION 115

BLOCK {name: (initialisation),
PRAGMA {`include "Evaluator.h"},
FUNCTION "=" {source: FUNCTION "-" { right: 100 }, destination: lowest},
FUNCTION "=" {source: 100, destination: highest},
STORE {

source: OPERATOR "merge" {
FUNCTION "random_real" {length: 8, lowest: *, highest: *}},

destination: OPERATOR "partition" {GROUP {population, size: n}}},
EVAL {population, evaluator: FUNCTION "evaluator"},
YIELD {population}

}

BLOCK {name: generation_equivalent,
BLOCK {count: n,

STORE {
source: OPERATOR "fitness_proportional" {
no_replacement: *,
source: OPERATOR "merge" {GROUP {population}}},

destination: OPERATOR "partition" {
GROUP {parents, size:2}, GROUP {rest}}},

STORE {
source: OPERATOR "mutate" {
per_gene_rate: 0.1,
source: OPERATOR "crossover" {

source: OPERATOR "merge" {GROUP {parents}}}},
destination: OPERATOR "partition" {GROUP {offspring}}},

STORE {
source: OPERATOR "merge" {GROUP {offspring}, GROUP {rest}},
destination: OPERATOR "partition" {GROUP {population}}},

},
YIELD {population},

}

Listing 5.10: Textual representation of the execution model for Listing 5.7.

The final parsing step converts the parse tree to the execution model elements
described in Section 5.2.2: stores, functions, yields, evaluations, pragmas and blocks.
Maintaining instruction sequence at this stage allows code generators to use that
information; a pure operator graph representation may be useful, but reconstructing
the original statement order is then not reliable. Assuming the order is retained,
the result of converting Listing 5.7 to the execution model is shown in Listing 5.10.

Code generation uses this model to produce executable code or to directly in-
terpret the algorithm. Observation of a running algorithm can reveal an incorrect
description, such as groups that increase in size each iteration or operators that do
not produce the expected output streams. Chapter 6 describes a software framework
that uses ESDL as configuration information and dynamically generates code using
its library of operators.

CHAPTER 5. EXECUTION 116

5.2.5 Summary
Because ESDL is independent from any programming language, platform or frame-
work, the interpretation of the language needs to be specified. This section has
defined the behavioural constraints necessary to ensure that ESDL descriptions are
interpreted consistently in a variety of contexts. Section 5.2.1 defined the conven-
tions of named group references and immutability that simplify reasoning about
variable values and group contents within an algorithm. Section 5.2.2 discussed
the freedom available to interpretations of ESDL that use non-sequential execution.
Section 5.2.3 covered the addition of new functionality into an execution configura-
tion, and Section 5.2.4 discussed the approach to converting a textual description
into an executable model.

The following section places this model of interpreting ESDL in the context
of the features reviewed in Section 5.1. Since ESDL is not a software package,
it cannot be compared with the reviewed software directly; however, a number
of features and behavioural decisions can be compared to those made in existing
work. Chapter 6 demonstrates that the models in this section are sufficient by
implementing a software package that uses ESDL and reproducing the behaviours
of existing algorithms.

5.3 Comparison with Existing Software
Section 5.1 reviewed and compared a number of EA software packages with respect
to the architectural decisions that are evident in their designs. Since ESDL is not a
piece of software, direct comparison is not possible; an implementation of ESDL has
considerable freedom to use any convenient or performant architecture. However,
Section 5.2 specified a number of architectural decisions that are necessary to ensure
correct behaviour. This section identifies the aspects of the execution model that
constitute an ESDL architecture and compares them to the decisions taken by other
software packages.

In Section 5.1, a distinction between population-centric and algorithm-centric
architectures was made, with the packages from Table 5.1 evenly split between
the two. ESDL is algorithm-centric: groups are simple data structures with no
application-specific behaviour. The primary impact of this approach is centralising
the customisable aspects of the implementation—the entire configuration is con-
tained in the ESDL definition and the operator implementations. However, ESDL
is neither a library nor a framework, since it is not directly executable code. Software
that is capable of using ESDL is likely to be a framework and include a library of op-
erators; some of the reviewed frameworks are hypothetically capable of using ESDL
in place of their existing configuration mechanisms. ESDL provides the “glue” that

CHAPTER 5. EXECUTION 117

is an essential part of component frameworks, rather than providing the framework
itself.

Since groups have no behaviour, the way in which they are passed between the
processing elements is important. However, the immutability constraint provides a
significant simplification by removing the need for explicit cloning. From Table 5.1,
none of the packages use true immutability, preferring conventions for cloning or
simply permitting mutable data. ESDL forbids changing data, or at least requires
the appearance of immutability, which means explicit cloning of individuals is not
required at the algorithm level. Because groups are immutable, reordering or updat-
ing individuals requires the entire group to be recreated in a new storage location.
This results in a larger number of memory allocations and copies than in other ap-
proaches, though on modern processors the benefit of linear memory access patterns
often outweighs the expense of extraneous copies.

Section 5.2.1 described the streaming behaviour of groups, suggesting a similar
approach to those reviewed packages (a, b, d, g, h and i) that pass enough individuals
to an operator to produce a single result. However, because ESDL operators are
known to apply to an entire stream, the distinction is unimportant for analysis.
Operator chains can mostly be viewed or implemented as either per-individual or
per-stream, with the caveat that a per-stream view must account for the ability
of operators to modify the length of the stream—most of the reviewed software
assumes or requires that the size of the result is known. ESDL does not necessarily
embed this information, though it can be specified or inferred with knowledge of the
operators that are involved.

As with most of the reviewed software, ESDL supports any representation or
species that has operators available. Section 5.2.3 described the general architecture
for integrating new operators with an ESDL definition. None of the reviewed soft-
ware has a similarly defined approach, primarily because they are already restricted
to a particular programming language and its extensibility features. An implemen-
tation of ESDL will be similarly restricted, though the model itself does not require
any formal notion of extensibility—context and consistent naming is sufficient in
written presentations, as shown in the examples in Section 4.4.

It was noted in Section 5.1 that none of the reviewed software would automat-
ically select operators to suit the representation in use. ESDL does not explicitly
require or forbid automatic selection, but assumes that the operators specified in
a system definition will be usable with the individuals provided. Some form of
operator overloading to select an operator based on name and the individual type
simplifies system definitions, since it avoids the alternative mitigation of embedding
the representation into every operator name—an overloaded mutate_gaussian oper-

CHAPTER 5. EXECUTION 118

ator is preferable to mutate_gaussian_integer and mutate_gaussian_real. However,
not every platform can support such a feature, and so it is not mandated.

Compatibility with existing software is a slightly different issue than for the
reviewed software. ESDL is primarily intended for humans to read as a substitute
for extended textual descriptions; if a system description can be converted by hand
into an algorithm with an existing framework, it can be said to be compatible,
while an automatic conversion requires specific software support. The models in
Section 5.2 are intended to ensure software that adds support for ESDL does so in a
way that is compatible with other implementations. Appendix A suggests a number
of components and their behaviour that would further ensure that algorithms can
be shared between implementations without changes in behaviour.

5.4 Chapter Summary
This chapter has reviewed a selection of available EA software, discussed the execu-
tion model that underlies ESDL and located ESDL within existing software pack-
ages. Section 5.1 showed that component models with loosely coupled operators are
popular among published libraries and frameworks. Separation of algorithm design
and configuration from operator implementation was also common—an architectural
approach that is implicit in the model of Chapter 3 and ESDL.

ESDL is not a replacement for existing software. Rather, it is a form of com-
munication that can be used with existing or specially-designed software to ensure
that written descriptions of EAs match the implementations used to perform experi-
ments. Constraints such as immutability, linear streaming and global variable scope
are intended to simplify understanding, in part by removing the need to redefine
how operators interact in each new algorithm definition.

Defining the behaviour, limitations and freedoms in ESDL allows implementers
to produce interoperable but distinct software. Central to the implementation is
a write-once blackboard, providing all parts of an ESDL system read-only access
to groups and variables. Rearranging the sequence of execution is simplified by
immutability while allowing considerable freedom for implementations to differenti-
ate themselves by providing parallel, distributed or otherwise enhanced execution.
Operators and functions must be easily addable to an ESDL system or else the lim-
itations of a fixed library will prevent the invention of novel algorithms. Chapter 6
presents an implementation of ESDL in terms of these models and demonstrates
how it fits into research workflows.

119

Chapter 6

Application

Earlier chapters have described a component-based model for EAs, a de-
scription language, ESDL, for composing entire algorithms and an execu-
tion model that ensures consistent interpretation of the language. While
primarily intended as a tool for written communication, ESDL can also
be used to configure a software framework and produce executable code
for an algorithm. ESDL can specify an EA with equal accuracy and
less text, making it suitable for sharing where code written in a general-
purpose programming language would be inappropriate or unclear. Be-
cause the description used for experimentation can be published without
modification, the likelihood of introducing errors is reduced. When a
reader wishes to implement a published algorithm, an ESDL description
increases their prospects of doing so correctly. In this chapter, the appli-
cation of ESDL to research, design, implementation and communication
are discussed and demonstrated. A specific implementation is described
and used to demonstrate that ESDL descriptions are sufficient to de-
scribe entire algorithms and are automatically compilable. Comparison
to equivalent implementations using other approaches shows that ESDL
descriptions are more concise.

6.1 A Hypothetical Workflow
This section illustrates the problems identified in Chapter 2 using hypothetical sto-
ries about a researcher and the work he performs in studying and reproducing an
EA. The two stories are completely fictional and presented as illustrative examples
of the contentions made in this work rather than as evidence. Presentation as fic-
tion allows the use of specific references and examples when discussing the issues
that occur; purely abstract discussion would be less tangible. In the absence of a

CHAPTER 6. APPLICATION 120

long-term study evaluating ESDL’s effect on research and development, plausible
and logically consistent discussion is necessary to recognise potential benefits.

Section 6.2 refers to the stories in this section as concrete examples of potential
issues and the mitigations provided by the model in Chapter 3 and ESDL from
Chapter 4. Section 6.3 describes a software framework, esec, that interprets and
executes ESDL systems. Finally, the example algorithms from Chapter 4 are ex-
panded to complete specifications for esec and compared to other equally complete
descriptions in Section 6.4.

Section 6.1.1, the first story, describes a scenario where ESDL does not exist. The
issues that arise in this story include ambiguous directions, conflicting specifications,
omitted information, supplementary materials of limited use and poorly organised
discussion. These issues have been noted earlier, and while it is extremely unlikely
that they would all appear in a single work, almost any would be sufficient on their
own to prevent an accurate reproduction of the algorithm.

Section 6.1.2 is the same story but based on the assumption that ESDL does exist
and is used extensively by the original authors and the researcher. The initial textual
description is structured around the sequence of an algorithm iteration rather than
grouping similar types of behaviour. In a sense, it describes each ESDL statement
rather than each operator. As a result, the background description is significantly
clearer. Also observable in this story is that the full ESDL description includes all
the parameters that were omitted from Story 1, and the operator definitions are
precise and implementable.

Both stories illustrate extreme scenarios that are unlikely to occur (or to be pub-
lished) in reality. The middle ground between these two scenarios includes many
good descriptions created without using ESDL, as well as the potential for good and
bad descriptions to be interpreted and implemented using ESDL. Section 6.2 dis-
cusses the application of ESDL to designing, implementing and sharing algorithms,
and explicitly covers the middle ground between the two stories.

6.1.1 Story 1
A researcher has discovered a reference to an interesting sounding algorithm called
Angry Mob Optimisation and wants to try it out. The reference includes a descrip-
tion of the algorithm as follows:

Angry Mob Optimisation (AMO) is inspired by the flocking
behaviour of large groups of people who have a single objective.
Such behaviour has been observed in political protests,
witch-hunts, revolutions and amongst sports fans.

CHAPTER 6. APPLICATION 121

The useful characteristic of such groups is that, while the entire
group (the “mob”) is absolutely certain about its purpose, this
purpose has been defined by a much smaller number of individuals
(the “instigators”). Often the instigators do not even participate
in the mob, preferring to move on and avoid responsibility.

The AMO algorithm utilises this behaviour to perform function
optimisation on deceptive expressions with multiple optima. We
define both instigators and mob members as real vectors
representing the function parameters.

The number of instigators and mob members is fixed throughout,
though mob members significantly outnumber the instigators.
Mobs are always the same size, but members may move between
mobs at any time, based on which mob they are closest to. All
entities move throughout the landscape using directed mutation;
mob members move towards mobs and instigators while
instigators move away from mobs.

Each mob member is mutated twice and the best variations are
retained—no crossover is used—while instigators are mutated far
more often and travel further with each mutation. Instigators
avoid mobs more strongly than mob members are attracted, which
results in instigators moving quickly around the landscape with
mobs forming in their wake.

The reference also includes the flowchart shown in Figure 6.1 and the diagram
in Figure 6.2. Table 6.1 shows the fitness of the best individual found after varying
numbers of iterations, taken as an average across 100 independent runs for each.

Intrigued by the algorithm, the researcher decides to try it on some problems
other than the benchmarks used by the original authors. Aware that a number of
details are absent from the written description, the researcher finds that the authors
have kindly made their source code available. It is written in C++ but the researcher
is unable to compile the experiment, despite having an up-to-date compiler. The
code is based around one function that implements the entire algorithm, with classes
for storing the values of instigators, mobs and mob members. Comments indicate
places where more debugging is required, variable names appear to be based on
abbreviations that are never explained and none of the numbers appear to match
those that were mentioned in the algorithm description.

Eventually, the researcher gives up and decides to create his own implementation
based on the written information. While coding, he identifies that the following
aspects are unspecified or ambiguous:

CHAPTER 6. APPLICATION 122

Identify mobs
A mob location is the average of the

mob members concentrated around it.

Move mob

members
Mob members move towards mobs,

towards instigators and randomly.

Move

instigators
Instigators move away from mobs,

randomly and faster than mob members.

Continue

search?
Only mob members can find solutions.

Finished

Yes

No

Figure 6.1: Flowchart of the hypothetical Angry Mob Optimisation algorithm.

Mob member

Instigator Mob

Mob leader

Figure 6.2: Elements of the hypothetical Angry Mob Optimisation algorithm.

Table 6.1: Best solutions found using Angry Mob Optimisation.
Sphere Rastrigin Rastrigin

(N = 10) (N = 2) (N = 10)
After 10 iterations 9069. 57.37 8705.
After 100 iterations 161.6 6.368 244.2
After 500 iterations 107.9 2.458 192.5

CHAPTER 6. APPLICATION 123

• The ratio of instigators to mob members and mobs is suggested by the diagram
but not clearly identified.

• Precise numbers of instigators, mob members and mobs are not specified for
the experiments conducted.

• Initial ranges of solution values are not given.
• Identification of mobs based on the locations of mob members is not specified

and is only vaguely described.
• The selection of mob members and instigators for mutation is unspecified,

except that each existing element may be selected more than once.
• The nature of mutation operation intended is unclear from the description.
• The relative importance of mob location, instigators and randomness to mob

member mutations is not specified.
• “Mob leaders” are shown in the diagram, but are not mentioned elsewhere in

the description.
The researcher fills the gaps by finding other publications of the same algorithm,
decrypting the source code and making what appear to be reasonable guesses. After
two days work, he has a full implementation, and by the end of the week he has
fixed most of his own bugs. Unfortunately, the results he obtains are inconsistent
with those that were published. Having spent a week working on AMO with no
reward, he simply moves on to other research.

While this story has an overly poor description of an algorithm, any one of
the problems listed above would be sufficient to prevent accurate implementation.
Assuming that authors intend for their work to be reproducible and useful to others,
accidental omissions need to be avoided. Executable code necessarily includes all
details, however, programming languages are typically not suitable for publication
or explanation, and the conversion to a more suitable form may introduce ambiguity.
The next story makes use of ESDL as a human- and machine-readable language that
is suitable for direct publication. Avoiding the conversion step reduces the potential
for information loss, while the structural decomposition helps the textual description
to focus better on each step rather than taking the entire algorithm as a whole. As
a result, Story 2 has a happier ending than Story 1.

6.1.2 Story 2
A researcher has discovered a reference to an interesting sounding algorithm called
Angry Mob Optimisation and wants to try it out. The reference includes a descrip-
tion of the algorithm as follows:

CHAPTER 6. APPLICATION 124

Angry Mob Optimisation (AMO) is inspired by the flocking
behaviour of large groups of people who have a single objective.
Such behaviour has been observed in political protests,
witch-hunts, revolutions and amongst sports fans.

The useful characteristic of such groups is that, while the entire
group (the “mob”) is absolutely certain about its purpose, this
purpose has been defined by a much smaller number of individuals
(the “instigators”). Often the instigators do not even participate
in the mob, preferring to move on and avoid responsibility.

The AMO algorithm utilises this behaviour to perform function
optimisation on deceptive expressions with multiple optima. We
define both instigators and mob members as real vectors
representing the function parameters. The number of instigators
and mob members is fixed throughout and mob members
significantly outnumber instigators.

One mob exists for each instigator and all mob members are
assigned to one mob each iteration. A mob leader is determined
by finding the mob member with the highest fitness that has not
yet been assigned. The remainder of the mob is filled by those
mob members most similar to the leader; for real-valued domains,
the Euclidean distance is suitable. The location of the mob is the
average (mean) of each dimension of each member.

After determining mob locations, all mob members are moved
towards each mob in inverse proportion to the distance between
the member and the mob location in each dimension. Using the
same calculation but a lower scale value, mob members are then
moved towards each instigator. Finally, a normally distributed
random value is added to each dimension. Each mob member is
varied twice and the best half of the entire resulting group is
retained.

Instigators are varied similarly to mob members, except that they
move away from mobs with a higher speed and are not affected by
instigators. The random value is taken from a distribution with
higher variance, increasing the potential movement of instigators,
and more variations are tried before reducing to only the best.

CHAPTER 6. APPLICATION 125

FROM random_real(length,lowest,highest) SELECT N_i instigators
FROM random_real(length,lowest,highest) SELECT N_m mob_members

YIELD mob_members

BEGIN iteration
FROM mob_members SELECT mobs USING find_mobs(count=N_i)

FROM mob_members SELECT N_m*2 new_mob_members \
USING move_towards(targets=mobs, speed=0.9), \

move_towards(targets=instigators, speed=0.8), \
repeated, \
mutate_gaussian(sigma=1)

FROM new_mob_members SELECT N_m mob_members USING best

FROM instigators SELECT N_i*50 new_instigators \
USING move_away(targets=mobs, speed=2), \

repeated, \
mutate_gaussian(sigma=5)

FROM new_instigators SELECT N_i instigators USING best

YIELD mob_members
END

Listing 6.1: ESDL description of the hypothetical Angry Mob Optimisation algorithm.

Table 6.2: Variable values for Listing 6.1.
Variable Value
length 2
lowest 10
highest 100
N_i 10
N_m 500

CHAPTER 6. APPLICATION 126

func find_mobs(source, count):
mob_locations = empty list
N = length(source) ÷ count
while length(mobs) < count:

leader = best individual in source

mob = { leader and N−1 individuals in source closest to leader }
source.remove_all(mob)

mob_locations.append(average(mob))

return mob_locations

Listing 6.2: Pseudocode for the hypothetical find_mobs operator.

The reference includes the ESDL definition shown in Listing 6.1, the values listed
in Table 6.2 and a definition of the move_towards operator as:

x
′

i = xi +
S

N

∑N

j=1

1

yji − xi

where xi is the value of the source individual for dimension i, S is the speed pa-
rameter, N is the number of targets and yji is the value of target individual j for
dimension i. It is noted in the explanatory text that where xi = yji, the contribution
in that dimension is zero rather than infinity. The move_away operator is identical
with the value of S negated. Finally, a pseudocode listing of the find_mobs operator
is included as Listing 6.2 and the results presented in the reference are summarised in
Table 6.1. The flowchart and figure from the first story (figures 6.1 and 6.2) are also
included, but the researcher finds that they help clarify his intuitive understanding
of how the algorithm works rather than forming a specific description.

Using a software framework that supports ESDL, the researcher copies the sys-
tem definition and writes three small functions for move_towards, move_away and
find_mobs. The framework already includes implementations of the other opera-
tors and the two evaluators used in the original reference, and supports the design
of a single experiment to perform the same configurations as in the original work.
After producing results similar to those already published, the researcher is confident
that he has a working implementation of AMO he can use for his own experiments.

6.2 Applying the ESDL approach
Section 6.1 showed two descriptions of the hypothetical Angry Mob Optimisation
algorithm. The first description included a textual description, flowchart and a dia-
gram; however, a number of important details were omitted, making the algorithm
unimplementable. The second description used a more organised textual descrip-

CHAPTER 6. APPLICATION 127

tion and an ESDL description, two equations and a short pseudocode listing, which
provided a complete description of the algorithm.

The following list of issues was identified in Story 1:
• The ratio of instigators to mob members and mobs is suggested by the diagram

but not clearly identified.
• Precise numbers of instigators, mob members and mobs are not specified for

the experiments conducted.
• Initial ranges of solution values are not given.
• Identification of mobs based on the locations of mob members is not specified

and is only vaguely described.
• The selection of mob members and instigators for mutation is unspecified,

except that each existing element may be selected more than once.
• The nature of mutation operation intended is unclear from the description.
• The relative importance of mob location, instigators and randomness to mob

member mutations is not specified.
• “Mob leaders” are shown in the diagram, but are not mentioned elsewhere in

the description.
As noted, while the hypothetical presentation has an unreasonable number of issues,
any one of these is sufficient to make reproducing the original experiment impossible.
A very careful author can make sure that none of these issues arise, while a formalised
approach can significantly reduce the effort required.

In Story 1, the authors of AMO implemented their algorithm in C++. While
not specified, it is fair to assume that the implementation evolved over time as
bugs were fixed, different ideas were tried and the target problem was changed, re-
sulting in code that the researcher was unable to understand or use. Recognising
this, the authors translated their algorithm into text and diagrams, aiming to de-
scribe its implementation in enough detail to be reproducible. However, without a
well-structured approach to design or translation, important information was inad-
vertently omitted. For Story 2, the ESDL that was used to design and implement
the algorithm is suitable for direct publication, removing the translation step that
caused the information loss in Story 1, as well as providing the structure for a clearer
textual description.

Chapter 2 identified a number of issues that result from the lack of a single, fun-
damental algorithm class for EAs, each of which can be observed in the hypothetical
stories:

• Difficulty in sharing advances between distinct algorithms
• Limited guidance in designing (rather than tuning) an algorithm to suit the

targeted problem

CHAPTER 6. APPLICATION 128

• Adherence to conventions for historical reasons rather than reassessing their
suitability for a new context

• Replication of software development because of perceived or actual unsuitabil-
ity for reuse

Story 1 did not specify the details of how individuals are varied randomly, while
Listing 6.1 in Story 2 makes clear that a random value is taken from a normal
distribution, as is commonly used in EP. The textual description avoids specifying
that the mutation is ‘like EP,’ since such a statement has more implications than
are applicable. In the ESDL description, however, the mutate_gaussian operator
clearly specifies the desired behaviour without inviting direct comparisons to another
algorithm. When the desired behaviour is cleanly encapsulated into an algorithm-
independent operator, new algorithms can share similar behaviour without implying
a more significant relationship.

Lack of design guidance was noted in Chapter 2 and is demonstrated in both
stories. Algorithms are inferred from an inspiration or metaphor, rather than being
designed for application to a specific problem. While it is possible that the metaphor
will result in a useful algorithm, significant tuning is still likely to be required for
each new application. The stochastic nature of most EAs means that tuning al-
most always improves the performance. However, because tuning typically does
not involve structural changes, redesigning the entire algorithm for specific problem
characteristics may be necessary to improve the ability of the algorithm to be tuned.

The third point, unnecessary use of conventions from earlier algorithms, appears
briefly in Story 1: the authors state that “no crossover is used,” despite there being
no reason to consider that crossover would be beneficial or suit the metaphor. In
a similar manner, the changes made to individuals are referred to as “mutations”
even though the values being ‘mutated’ are not representative of genetics. This ter-
minology is inspired by GA and used throughout the field, though the implications
are often unclear when discussing other algorithms. In Story 2, the hypothetical
authors avoid all references to GA-inspired terminology, using the less-specific “op-
erator” as defined in Chapter 3. The ability to use these terms, and others such as
“selector,” “individual” and “group,” in context but without ambiguity is one of the
main benefits of the clear definitions made in Chapter 3.

Finally, the researcher in Story 1 deliberately set out to rewrite software that
already existed because it was of too low quality to be useful to him. Developing
software for reuse is difficult and does not often occur in experimental research, as
discussed in Section 2.2.3. The most significant issue caused by unusable software
is difficulty in reproducing experiments. This section discusses the use of ESDL
for designing and sharing algorithms in ways that support, rather than hinder,
independent reproduction.

CHAPTER 6. APPLICATION 129

6.2.1 Designing Algorithms
ESDL and the model described in Chapter 3 provide an alternative conceptualisation
to that provided by biomimicry and other metaphors. This is most obvious in the
complete absence of biological or genetic terms such as “genome” and “offspring”
throughout the definitions in Chapter 3, on the basis that while they support the
design of an algorithm, the metaphor is not necessary for specification or description.
The proposed alternative model represents the algorithm as instances of potential
solutions being modified by a network of operators.

Because the interactions between operators within the network are well defined,
reasoning about the effects of adding, changing or removing an operator is simplified.
For example, if greediness or premature convergence is a concern, all the operators
in a network that have an effect on selection pressure can be identified. When
balancing an algorithm for either exploration or exploitation, particular variation
operators can be evaluated independently, taking into account any interactions that
may exist, thereby allowing informed decisions to be made.

As discussed in Section 2.2.2, algorithm designs often include concepts from exist-
ing algorithms without apparent reason, though potentially because of the difficulty
in constructing and implementing an entirely new algorithm without a template.
However, composing a network from known operators is a less complex task than
producing a complete design, with a result that is more flexible than an executable
program. When combined with a software framework that can interpret ESDL,
the write-test-revise process is more rapid than when implementing an algorithm
directly.

Both stories in Section 6.1 describe extremes, either extremely poor presentation
or extremely convenient description, and a researcher’s actual experience is likely
to incorporate aspects of both scenarios. However, even if ESDL is not used by the
original author, a reader can use it as an aid to interpreting and implementing the
algorithm. For example, suppose the researcher in Story 1 decided to reimplement
the algorithm using ESDL rather than a general-purpose programming language.
In this case, the first step is a functional decomposition to identify the groups and
operators that make up the description. Even with a poor explanation, it is possible
to create an ESDL description. Listing 6.3 shows an annotated example of the ESDL
system that may be obtained from the description given in Story 1. Comparison
with Listing 6.1 shows significant similarity, despite the missing and ambiguous
information. In Story 2, the textual description has clearly been structured based
on the decomposition in the later system definition, and converting this description
to ESDL should result in a near identical system.

CHAPTER 6. APPLICATION 130

Somehow need to create a group of instigators
FROM new_instigator SELECT m instigators
Also need a group of mob members
FROM new_mob_member SELECT n mob_members

BEGIN iteration
Not sure how to find the mobs
FROM mob_members SELECT mobs USING find_mobs

Varying mob members
FROM mob_members SELECT n*2 offspring \

USING repeated, \ # "each mob member is mutated twice"
move_towards(target=mobs, strength=0.5), \
move_towards(target=instigators, strength=1), \
move_random

Keep the best mob members
FROM offspring SELECT n mob_members USING best

Varying instigators
FROM instigators SELECT k offspring \

USING repeated, \ # "each instigator is mutated more often"
move_away(target=mobs, strength=1), \ # "avoiding mobs"
move_random

Keep the best instigators
FROM offspring SELECT m instigators USING best

END

Listing 6.3: ESDL description derived from the text in Story 1.

CHAPTER 6. APPLICATION 131

Though at first glance Listing 6.3 may be daunting, especially compared to
the flowchart in Figure 6.1, it contains considerably more detail than the diagram.
Communicating an algorithm using ESDL is covered in more detail in Section 6.2.2,
but it is clear that ESDL is not suited to the sort of high-level overview that can be
obtained from a simple diagram.

From the system in Listing 6.3, the elements that need to be defined are obvious:
the two generators new_instigator and new_mob_member, group sizes m, n and k, and
the find_mobs, move_towards, move_away and move_random operators. While there are
too many details missing from the textual description to produce a matching result,
the use of ESDL here provides a convenient work breakdown. This design guidance
directly addresses the issue of designing an algorithm—regardless of whether or not
the system description is used for anything more than planning—and supports work
in implementing algorithms.

Another possible situation that was not covered in the hypotheticals is where
the algorithm is published using ESDL but the researcher does not want to use
an ESDL-based software framework. He still wishes to reproduce the experiments,
but the implementation will be based on either a separate library or written from
scratch. The precise mapping—or whether a mapping is even possible—from EDSL
to a particular framework depends on the architecture of the target. Most of the
software reviewed in Chapter 5 can only represent a subset of possible ESDL systems
without significant redevelopment. In particular, the population-centric approaches
are effectively restricted to algorithms that do not merge, join or partition groups.
However, those frameworks that support arbitrary or flexible sequences of operators
can support a significant range of systems.

Writing an implementation without the use of a library, despite being identified
as contributing to some of the issues in Chapter 2, is sometimes a useful approach,
since frameworks that interpret arbitrary ESDL systems are unlikely to obtain bet-
ter execution performance than a specific implementation of a single algorithm. As
with manually converting ESDL to use a library, this transformation uses the sys-
tem definition as a precise specification of the intended behaviour, providing the
implementer with a structure and validation criteria that may not exist with a less
formal textual description.

A direct translation of the system—in effect, recreating the behaviour of an ESDL
interpreter—is better performed by an automatic compiler; a complete, handcrafted
implementation should optimise in ways that simple operator composition cannot.
For example, many algorithms begin with a selection operator that requires a group
to be sorted by fitness immediately after the group has been sorted in order to
calculate statistics. Interpreters are unlikely to recognise that the group does not
need to be reordered, while a human developer can easily identify this optimisation.

CHAPTER 6. APPLICATION 132

High performance algorithm implementations are necessary for large datasets or
extended parameter sweeps. Assessing and comparing the algorithmic performance1

of an EA in any meaningful sense requires many repetitions, the total number of
which increases exponentially with the number of parameter configurations. Re-
ducing the actual time taken to evaluate hundreds or thousands of configurations
allows the researcher greater flexibility in adjusting either the algorithm construc-
tion or to use a wider range of test problems. Reproducing the results in Table 6.1
in Story 1 requires 900 separate experiments, totalling over 500 000 iterations of
the algorithm; saving 10 milliseconds each iteration would reduce the total time
by almost 90 minutes. Such an improvement can be achieved by optimising (or
obtaining an optimised version of) a single operator, performing the evaluation on
parallel hardware or distributing the entire algorithm across multiple processors, any
of which are easily available when the algorithm design is abstracted from operator
implementations but would require complete reimplementation of monolithic code.

The benefits of the ESDL approach to designing and implementing algorithms
come primarily from the decomposition and greater structure encouraged by the use
of loosely coupled operators. Because each operator is isolated from those around,
modifications or substitutions are straightforward and operators created and shared
by others can be integrated without modification.

6.2.2 Sharing Algorithms
Despite the obvious application of ESDL as a programming language, its intended
purpose is as a description language. This implies that ESDL is not meant to
be created and then hidden, as code typically is, but to be included directly in
written communication as a clear, unambiguous specification of the algorithm being
discussed. While Section 2.2.3 saw that some researchers may be uncomfortable
about publishing code as an intrinsic part of their work, it should be noted that
there is little difference between using ESDL and any other equally precise algorithm
description.

ESDL provides a number of advantages over alternative notations that may be
used in a publication. As plain text, it is very simple to include directly into a
paper without translating into markup for a symbolic, mathematical or pseudocode
notation and little or no formatting is required to assist with readability. ESDL
reduces the effort required to understand and apply an algorithm, and is more
easily recognisable than pseudocode, which automatically provides context for a
familiar reader. Unfamiliar readers can see that each line is an English sentence
describing a definite action, and reading an entire system is more like reading a

1Based on measures such as convergence speed, best fitness or diversity, rather than memory
usage, CPU load or time per iteration.

CHAPTER 6. APPLICATION 133

textual description than source code or mathematics. Even if a reader is uncertain
of exactly how the algorithm should work, the use of a software interpreter means
they are able to use the ESDL code directly to produce an implementation that
matches the author’s intent.

Presentation of an ESDL system is expected to follow a regular pattern, with
variations depending on the emphasis desired by the author, similar to how Story 2
presented the hypothetical Angry Mob Optimisation. A textual overview or discus-
sion of the algorithm is given to provide background, inspiration and metaphor, but
not to act as a complete specification. This overview may include a diagram to fur-
ther illustrate the algorithm, potentially in the style of Section 3.5, which matches
the decomposition provided by ESDL. Evaluators and operators that are specific
to the algorithm are discussed and specified in a form the author considers most
appropriate. For example, a crossover operation may be shown with a diagram,
while vector operations may be better shown as an equation. Finally, the ESDL
system definition is provided as a figure or listing, depending on style. Actual code
for operators should be deferred to an appendix or accompanying material, unless
it has been presented as the operator specification.

As a more demonstrative example than Story 2, the remainder of this section
describes the second algorithm from [2] in full, following the guidelines given earlier.
Details that were omitted from the original paper have been found or invented and so
the original results may not be reproducible from this description, though the nature
of the algorithm is retained. Notably, both variation operators used were cited but
not described, necessitating reference to other works and risking the introduction of
errors in transfer. Finally, while the original description draws heavily on both ES
and GA in describing this algorithm, the main focus here is on its behaviour and
not its inspirations.

6.2.2.1 Affenzeller 2 (Untitled)

This algorithm represents the diversity of biological evolution by applying different
variation operators to parts of a population, rather than using the same operators
on the entire population. Sub- or “island” populations are sometimes used for this
purpose, though migration rates tend to be low, resulting in little improvement over
using a single population with a fixed variation scheme. This algorithm creates new
“islands” from a single population each iteration to maximise information sharing
while dynamically adapting operator usage by varying the size of each subpopula-
tion.

The two crossover operators used are Edge Recombination Crossover (ERX) [96]
and Order Crossover (OX) [69]. Both operators use the information represented
by two parent individuals to create a single child. ERX treats each individual as

CHAPTER 6. APPLICATION 134

A B C D E F

A B C D E F

#1

#2

A B C E F D B C E

B A C D F E A D F

C A B D F A B E

Map

Figure 6.3: Adjacency map created for Edge Recombination Crossover.

from random import randrange
A = ['a', 'b', 'c', 'd', 'e', 'f']
B = ['b', 'd', 'c', 'a', 'e', 'f']
C = [None] * len(A)

i = randrange(len(A) - 2)
j = k = randrange(i + 1, len(A))
C[i:j] = A[i:j]

while j != i:
while B[k] in C: k = (k + 1) % len(B)
C[j] = B[k]
j = (j + 1) % len(C)

Listing 6.4: Python example of Order Crossover.

circular and uses an adjacency map to select a new sequence from two parents.
Figure 6.3 shows two example individuals and their adjacency map.

The child individual is created by selecting the first component of either parent
(either A or B in Figure 6.3) with the least edges in the map, randomly selecting one
if they are equal. For this example, B is selected at random. The next component is
selected from B’s edges—A, C, D and F—preferring the one with the fewest edges.
Since B has been used, A has three remaining edges while C, D and F each have
two; one of C, D or F is selected at random. This is repeated until all components
have been used exactly once.

OX moves a randomly selected substring from the first individual directly to the
offspring and fills out the rest of the components in the same order as they appear
in the second individual. Listing 6.4 shows a short snippet of Python code that
performs OX on two lists.

An initial population of 500 individuals is created by randomly shuffling the
set of all nodes. No repetitions of components within an individual are permitted,
though identical individuals are not prevented. In the first iteration, 100 offspring
are created using ERX and 900 using OX; this proportion changes linearly over 400
iterations so that by the last iteration 900 are created by ERX and 100 by OX (a
change of two individuals each iteration).

CHAPTER 6. APPLICATION 135

FROM shuffled_integer(maximum=6) SELECT 500 population
YIELD population

erx_count = 100

BEGIN generation
FROM population SELECT (erx_count) offspring1 USING tournament, erx
FROM population SELECT (1000-erx_count) offspring2 USING tournament, ox

FROM offspring1, offspring2 SELECT 500 population USING best
YIELD population

erx_count = erx_count + 2
END

Listing 6.5: ESDL description of Affenzeller 2.

Parents are selected using a simple tournament, returning the fitter of two ran-
domly selected individuals or the first of the two if equally fit. The 1000 offspring
are reduced to 500 each iteration by keeping the fittest. Listing 6.5 shows the ESDL
description of this algorithm.

6.2.3 Summary
This section has described how ESDL can be used to support work with EAs by
providing design guidance and simplifying and ensuring the accuracy of presentation.
Separating operator implementations or descriptions from the overall structure of
the algorithm is central to improving the clarity of both parts. These approaches to
designing, implementing and sharing EAs, combined with the execution model from
Chapter 5, are the main proposal of this thesis.

The following section describes an actual implementation of a software framework
supporting ESDL, which is then used in Section 6.4 to demonstrate that complete
and unambiguous ESDL descriptions are capable of implementing a range of existing
algorithms and are more concise than alternative approaches.

6.3 Executing ESDL systems
EC is predominantly a research field, with a higher demand for publishable results
rather than commercial quality software components. Given a target audience with
a greater interest in innovation than performance, a flexible ESDL-based software
framework allows fast evolution of algorithm structures and implementations and
the ability to easily try ideas that are not already widely used; a feature that was
found to be absent from the EA software packages reviewed in Section 5.1. Typically,
the cost of greater flexibility is reduced execution performance. ESDL’s advantage

CHAPTER 6. APPLICATION 136

in this area is portability, since systems can be developed in a flexible environment
and transferred to a high-performance framework without modification.

This section describes esec, which is a flexible framework that uses ESDL as its
main configuration mechanism. While the ability to directly execute ESDL systems
is not essential, it is helpful as a validation tool when applying the approach to
design and research. While a human reader can take advantage of implied context,
an ambiguous or incomplete description cannot be compiled or executed automati-
cally. Development of esec was necessary since no existing software uses the model
described in this thesis, hence the minor hypocrisy of creating yet more code. While
we do not expect esec itself to be widely reused (though it certainly could be),
the provided model and structure should significantly reduce the implementation
overhead faced by future developers.

This description of esec is based on the execution models described in Chap-
ter 5 and acts as a specific example of instantiating those models for a particular
platform; Appendix F describes the use of these models for a different platform.
These examples are intended to demonstrate that the models in Chapter 5 are not
contradictory and are able to be implemented.

esec is used in Section 6.4 to implement a range of EAs using ESDL and ensure
the descriptions are complete and unambiguous—esec cannot execute an ambiguous
ESDL system. The volume of code required for these descriptions is then compared
to alternative, equally precise implementation approaches.

6.3.1 Major Components
The esec framework is based around experiments, representing algorithms with com-
plete sets of parameters. Each experiment is initialised with a dictionary of config-
uration information. The ESDL system is the majority of the definition. Starting
the experiment compiles the ESDL definition into a System object, which includes
references to a monitor, a landscape and a block selector, as well as all the oper-
ators required for running the algorithm. Figure 6.4 shows the architecture of an
initialised experiment.

Monitors provide statistical analysis, termination and output functionality by
responding to various events, such as the start and end of each iteration, YIELD

statements and exceptions. For example, the CSVMonitor class writes details from
each iteration to a file in CSV format. esec can be adapted to run using a GUI by
implementing a custom monitor that acts as an intermediary between the experiment
and the user’s view. Monitors are responsible for termination conditions, whether
based on elapsed iterations, evaluations or individuals’ fitnesses.

Landscapes, in esec, represent the problems being solved. The term comes from
the geometric view of benchmark problems as a two-dimensional surface with a high-

CHAPTER 6. APPLICATION 137

Experiment Configuration Dictionary

esdlc

System

Definition

Monitor

Parameters

Landscape

System

(Executable

Algorithm)

Monitor
Termination

criteria

Yielded groups

Start/end iteration

Landscape

(Default Evaluator)

Output

Selector

Figure 6.4: Architecture of an esec experiment.

est (or lowest) point, though there are no restrictions on the number of dimensions
a landscape may use. When specified in the configuration dictionary, the landscape
acts as the default evaluator (see Section 4.2.4, page 71).

The block selector is an iterable object that returns the name of the block to
execute next (as described in Section 4.3.1, page 74). By default, the selector is
a list containing the names of each block available but more complicated selectors
may include a reference to the monitor, allowing statistical information to be used
to determine the block to select.

Python’s support for dynamic compilation and execution is used to transform the
ESDL definition into Python code, with operators provided as callable objects in the
configuration dictionary. There is no explicit distinction made between any of the
external elements: operators, variables, groups, functions, generators and evaluators
are all provided in the same way and accessed directly through generated Python
code. Generators and operators provided with esec are automatically available,
including all those defined in Appendix A.

Listing 6.6 shows an example operator that uses Python iterators to read from
the input stream and write to the output stream. The for loop retrieves individuals
from the source stream one at a time and correctly handles propagating the end
of stream signal, while the yield statement makes the result available to the next
operator in the chain and waits for it to be consumed before continuing. In this
way, each operator only processes as many individuals as required by the subsequent
operator.

The following sections detail how esec implements each of the three models
described in Section 5.2.

CHAPTER 6. APPLICATION 138

def mutation(_source):
for indiv in _source: # read from source stream

... # perform mutation
yield new_indiv # append to output stream

Listing 6.6: esec operator implemented in Python.

6.3.2 Memory Model
Central to the memory model is the blackboard, which is essentially a mapping from
names to the group or variable associated with the name at that time. Mappings
in Python, including variable scopes, are implemented with dictionaries. Using the
same data structure allows the blackboard to be initialised directly from the config-
uration dictionary and also to be used as the scope for generated code. Listing 6.7
shows an example of initialising the blackboard from a configuration dictionary. De-
tails relating to external operators, monitors and selectors are omitted for brevity;
these are covered in later sections.

Using exec with an explicit scope parameter ensures that all variables created,
modified or accessed by the generated code are stored in blackboard and separated
from the outer scope. Due to Python’s scoping behaviour, operator and function
implementations cannot access the blackboard, as specified by Section 5.2.1.

Operators are implemented as Python iterators with groups represented by lists.
This allows language features and libraries to be used to provide merge and partition
operators. Lists may be used as iterators implicitly, which allows interchangeable use
of operators and groups as sources to other operators. Further discussion of operator
implementations is deferred to Section 6.3.4; however, the partitioning operator is
relevant to memory allocations and requires coverage here.

Partitioning is performed by the _part function which returns the resulting group.
Assigning the result to the group variable updates the blackboard reference to a fully
constructed list, rather than creating an empty list and appending individuals. This
ensures that the partially initialised groups cannot be accessed. Further, since dic-
tionary contents are covered by Python’s built-in reference counting, the memory
is recovered automatically once a value has no references remaining. Private chan-
nels are established for transferring individuals since the iterator reference is only
provided to the next operator in the chain.

Fitness values are stored as a member of the individual but are only evaluated
(and cached) when the fitness attribute is accessed. This apparent breach of the
immutability constraint actually has no impact in a single-threaded environment.
Users can provide alternate representations that evaluate fitness eagerly if required.

CHAPTER 6. APPLICATION 139

1 config = {
2 'system': {
3 'size': 100,
4 'definition': '''
5 FROM random_indiv SELECT (size) population
6 YIELD population
7

8 BEGIN generation
9 FROM population SELECT (size) population \

10 USING fitness_proportional, crossover_one, mutate_random
11 YIELD population
12 END'''
13 },
14 }
15

16 blackboard = dict(config['system']) # shallow-copy original dict
17 esdl_source = blackboard.pop('definition') # remove ESDL system from blackboard
18 py_source = esdlc.compileESDL(esdl_source)
19

20 exec(py_source, blackboard)
21 # blackboard now contains _block_init() and _block_generation() functions,
22 # as well as a size variable
23

24 exec('_block_init()', blackboard) # run initialisation block
25 # blackboard now contains a population variable, which is a list of individuals
26

27 while shouldContinue(): # actually belongs to the monitor
28 block_name = 'generation' # actually comes from the selector
29

30 exec('_block_' + block_name + '()', blackboard)
31 # blackboard now contains the updated population

Listing 6.7: Initialisation of the esec blackboard in Python.

CHAPTER 6. APPLICATION 140

For non-group variables, the opaque data type (Section 5.2.1) is fulfilled directly
by Python’s dynamic type system; since any value may be assigned to any vari-
able, regardless of its previous type, there is no need to declare or restrict variables.
Any Python object may be provided in the configuration dictionary, returned by
an external function or specified as an argument. Support is included in the ESDL
compiler to allow any variable to be called (as if a function) rather than only ex-
plicitly declared functions, which allows Python objects to provide methods within
system definitions.

Finally, YIELD is implemented as a call to the monitor with a reference to the
yielded group. This formalises the access to contents of the blackboard, and since
neither the monitor not the generated code modify the contents of the group, there
is no need to make a copy; Python’s reference counting ensures that the group is not
released as long as the monitor holds a reference. Depending on the implementation
of the monitor, analysis may be performed immediately or deferred to the end of the
iteration—deferring even later is possible if the group is not used for termination
conditions. The included ConsoleMonitor and CSVMonitor classes collect basic statis-
tics such as fitness range and distribution immediately, which has the added effect
of evaluating all individuals in the group that do not already have cached fitness
values.

In summary, ESDL’s memory model (Section 5.2.1) is similar to Python’s ex-
ecution model and can be implemented easily. Dynamic execution is restricted to
the scope of the blackboard and streaming is provided by Python’s iterator pat-
tern. Opaque variable types match the behaviour of Python’s dynamic typing and
the memory model can be fully implemented in Python without modification or
relaxation.

6.3.3 Sequence Model
As stated in Section 5.2.2, a model can behave correctly by atomically executing
each statement in the specified order. Since esec favours flexibility over execution
performance, overlapping and out-of-order execution are not used. Further, preserv-
ing statement order allows users to include non-pure functions (with side effects)
without requiring explicit synchronisation.

Each store operation is converted into multiple lines of Python code: one to
construct the operator chain and one line for each destination group. When only
one destination group is specified the entire operation can be collapsed to one line of
code; otherwise, a reference to the operator chain needs to be stored temporarily to
allow each destination group to use it in turn. The itertools.chain function performs
merging and itertools.islice handles partitioning, though esec uses _merge and

CHAPTER 6. APPLICATION 141

FROM a, b SELECT 100 c, d USING crossover, mutation

_gen = mutation(_source=crossover(_source=_merge(a, b)))
c = _group(_part(_gen, 100))
d = _group(_gen)

Listing 6.8: Python code generated for a FROM-SELECT statement.

a = 10
result = function_call(parameter=value, a, b)

result = function_call(parameter=value, a=a, b=True)

Listing 6.9: Python code generated for a function call.

_part wrapper functions that also handle parameterless generators2 and update the
blackboard correctly. Listing 6.8 shows an example FROM-SELECT statement and the
equivalent Python statement. JOIN-INTO statements are constructed in an identical
manner, except that _join is used instead of _merge.

Function operations are written almost identically to the ESDL definition, as
Python supports similar named parameter syntax to ESDL. Implicit parameters are
handled by reproducing the name if a variable exists or specifying True otherwise.
Listing 6.9 shows the code generated for a function call with one explicit parameter
and two implicit parameters, only one of which has a value. Variables specified only
in the configuration dictionary but not the ESDL definition are made available to
the compiler, ensuring that code generation is correct.

Due to the sequential nature of the code, until a function returns no other pro-
cessing takes place. The same applies to YIELD statements, so if the monitor performs
statistical analysis synchronously, the algorithm will halt until it is complete. With
the lack of statement reordering and freedom in variable types, developers can im-
plement systems with complex side effects but known behaviour. These are unlikely
to be portable to other implementations, but may provide useful functionality for
innovative research.

In summary, esec avoids the need for a complicated scheduling model by using
a purely sequential model. This may affect execution performance, though it does
allow the use of functionality such as non-pure functions and user feedback or inter-
activity. The store and function operations (Section 5.2.2) are used as models for
code generation, ensuring that valid code is created for all arrangements of source
and destination groups and operator chains.

2Essentially by detecting whether the object can be iterated over or called. Generators with
parameters are called and their result (an iterator) is passed to _merge.

CHAPTER 6. APPLICATION 142

6.3.4 Extensibility Model
Each extensible object in esec is a callable Python object—typically a function.
Since the configuration dictionary is capable of containing references to these objects,
users can include operators and functions as key-value pairs. The system section is
already used as the initial blackboard for the algorithm (see Listing 6.7), and esec

allows variables to be called as functions or operators without an explicit declaration,
making the inclusion of external functions or operators a matter of adding an entry
to the configuration dictionary. This has the added benefit of clearly documenting
which externals are in use for a given experiment.

Since Python supports late binding, named parameters and default values, there
is no need to specify an operator or function prototype as in a language like C++.
The only constraint on operators is the inclusion of a parameter named _source

to receive the source stream. This parameter would usually be positioned first,
though since it is referred to by name in generated code the position is irrelevant.
Names beginning with an underscore are reserved for internal use and hence no other
parameter names should conflict with _source.

Implementing operators using Python’s iterator pattern provides the full inter-
face specified in Section 5.2.3: parameters are set when the function is called, the
source stream is provided as an iterator and the output stream is the iterator that
is returned.3 For joiners, which in esec are only distinguished by their appearance
in JOIN-INTO statements, the _source parameter contains a list of the source groups.
Generators are defined similarly to operators but have no _source parameter and
iterate forever. Output streams in all cases may be provided as any iterable object,
such as returning a list; using the yield statement is not essential.

In summary, Python’s callable object and iterator patterns fully support the ex-
tensibility model (Section 5.2.3) with very few extra requirements. Python supports
named parameters and default arguments, and provided a _source parameter is in-
cluded, operators can be implemented as filters using the iterator pattern. The fall-
back procedure to instance methods where operators are not specified (Section 6.3.1)
allows different implementations to be provided depending on the representation of
the individuals. A simple implementation of the extensibility model allows users to
easily define and use novel operators to create and evaluate algorithms.

6.3.5 Configuration Files
esec includes a run.py script intended for running reproducible experiments, making
use of externally defined configuration files. These files use Python syntax and in-
clude a configuration dictionary named config, any operator or evaluator definitions,

3Use of the yield statement transforms the function into an iterable object that is returned
immediately.

CHAPTER 6. APPLICATION 143

and an optional configuration generator function called batch(). Listing 6.10 shows
a complete configuration file for a GA, including an evaluator implementation, a
configuration dictionary for the system and the monitor, the random seed value to
use and the batch() function. If run.py is invoked in batch mode, this function is
called to produce a list of configurations; in Listing 6.10 this includes all combina-
tions of the values for length and p_m in the loops. The CSVMonitor class is used to
write output to files.

6.3.6 Summary
This section has shown that esec implements the execution model described in
Chapter 5. Appendix E has a more detailed overview of the design and capabilities
of esec, and Appendix C specifies the behaviour of the ESDL compiler.

Section 6.2 examined how ESDL and esec can support research with algorithms,
and the following section evaluates this guidance by applying it to describe the EAs
from chapters 3 and 4.

6.4 Code Comparison
This chapter has discussed how ESDL can provide significant benefits to those work-
ing with EAs. Through two hypothetical situations in Section 6.1, the potential for
ambiguity has been highlighted and a workflow using ESDL was shown that can
aid with avoiding these problems. Section 6.2 discussed ESDL’s contribution to
approaching the design, implementation and sharing of EAs, and Section 6.3 pre-
sented esec, a software framework that can interpret ESDL systems directly without
a manual translation.

Comparing systems described in ESDL to other software implementations is not
straightforward. Differences in programming languages, styles and libraries make
objective comparisons difficult. An algorithm specification for one framework may
be trivial due to existing support, while other algorithms may be impossible to create
without effectively implementing all of the required components.

One of the software packages reviewed in Chapter 5 was ECJ. A framework writ-
ten in Java, ECJ specifies algorithms using parameter files that define the structure
and configuration of operator pipelines. Programming in Java is required to pro-
vide operators and representations that are not included in the library of classes.
ECJ compares similarly to esec in that both forms of parameter/configuration files
can fully describe an experiment, including the algorithm, problem, termination
conditions and level of output. Both can stand alone as descriptions of an experi-
ment, with reference to lower-level code not necessary to obtain an overview of the
algorithm.

CHAPTER 6. APPLICATION 144

from esec import esdl_eval
from esec.monitors import CSVMonitor

@esdl_eval
def one_max(indiv):

return sum(1 if gene else 0 for gene in indiv)

config = {
'random_seed': 177388292,
'system': {

'size': 20,
'length': 10,
'p_m': 0.01,
'definition': '''

FROM random_binary(length) SELECT (size) population
EVAL population USING one_max
YIELD population

BEGIN GENERATION
FROM population SELECT (size) parents USING fitness_proportional
FROM parents SELECT offspring USING crossover_one, \

mutate_bitflip(per_gene_rate=p_m)

FROM offspring SELECT population
YIELD population

END''' },
'monitor': {

'class': CSVMonitor,
'limits': { 'iterations': 100 }

}
}

def batch():
for p_m in [0.0, 0.01, 0.05, 0.10]:

config['system']['p_m'] = p_m
for length in [20, 50, 100, 200]:

yield { 'config': config, 'settings': 'system.length=%d' % length }

Listing 6.10: esec configuration file for GA.

CHAPTER 6. APPLICATION 145

However, because of the differences between ECJ’s and esec’s libraries, imple-
menting identical algorithms are not comparable volumes of work. Some algorithms
can be constructed from available operators, while others require an entirely new
pipeline implementation that is equivalent to using ECJ as a library rather than a
configurable framework. A similar issue occurs with comparing any EA libraries—a
full algorithm implementation may be part of the library, which reduces the effort
required to define that particular algorithm, but has little or no effect on the ease
of describing others.

In this section, six of the seven algorithms4 used in chapters 3 and 4 are converted
to experiment descriptions in esec configuration files and compared to three other
descriptions. The experiment is the same in each description and the comparison
uses volumetric measures, specifically, lines, words and characters of code, as a weak
proxy for effort in creating, reading and understanding the description.

Comparisons are made between esec configurations (Section 6.4.1), ECJ param-
eter files (Section 6.4.2), C# programs using the FakeEALib library (Section 6.4.3)
and C# without any library (Section 6.4.4) are used. All of the code, including Fa-
keEALib, was created specifically for this comparison in order to control variations
in library support and coding styles; the comparison is between the efficiency of
each approach to describe these algorithms and not the skill level of the creator of
particular existing descriptions. All of the code created was executable and verified
to ensure equivalent behaviour and solution quality. Section 6.4.5 summarises the
comparison results and Appendix F contains the full text or code of each configu-
ration.

6.4.1 esec Configurations
The format of esec’s configuration files is described in Section 6.3.5. Converting
the algorithm descriptions from Section 4.4 is achieved by using the ESDL descrip-
tions without modification and translating the pseudocode operator descriptions
into Python. Where an operator is provided by the library its implementation is
not counted towards the volume of the description.

In all the configuration files, the ESDL definition is separated from the configu-
ration dictionary by storing it in a constant string variable. This string describes the
intended algorithm in a way that could be separated completely from the configura-
tion file and presented alone. The other approaches have no equivalent segment that
is separable without significant loss of context. However, the entire configuration
file is counted for this comparison, since the algorithm cannot be executed without
the configuration.

4GP is omitted because it depends so heavily on the style of library used that a comparison is
effectively comparing libraries rather than the description.

CHAPTER 6. APPLICATION 146

Population

Unfiltered Select Variation Sort Filter

Vary()

Step()

AsNextStep()

Figure 6.5: The Population class from FakeEALib.

6.4.2 ECJ Parameter Files
Parameter files for ECJ consist of name-value pairs that define an operator pipeline
by specifying the source of each operator. A full description of ECJ and its config-
uration file format can be found in [60]. ECJ is used as a comparison because it is
the most widely used framework identified in Chapter 5 and hence is likely to be
representative of actual experience.

For comparison purposes, the entire parameter file is counted including imple-
mentations of classes or functions that were specified in the esec configuration files.
While this includes some code that is part of ECJ’s library, it omits code that
was written to provide equivalence with esec, such as real-valued individuals with
strategy vectors (as used for EP). Inevitably, because ECJ and esec use different
approaches to achieve the same quality of description, some concession must be
made in order to provide comparability. Appendix F includes all the code that was
counted toward the volume measurements shown in Section 6.4.5.

6.4.3 FakeEALib Programs
FakeEALib is a hypothetical library created solely for the purpose of comparing the
use of a library to ESDL. Based on the common architectural traits found in the
review of EA software in Chapter 5, FakeEALib uses a population-centric model
with a sequence description as a separate function. Individuals are cloned explicitly
as part of the algorithm but are modified directly by operators. Each population
object performs a fixed sequence of steps—select, vary, sort and filter, as shown in
Figure 6.5—where each step may consist of one or more operators to apply. For
example, the population for EP uses clone selection, expands the population using
mutation, and applies a fitness-based sort and a truncation filter to reduce it back
to its original size. Each time the Step() function is called, these steps are executed
and the population is updated.

As an alternative to updating the population directly, the AsNextStep() function
returns an enumerable sequence of individuals, which performs the same steps but
does not update the population directly. Instead, the selected or varied individuals

CHAPTER 6. APPLICATION 147

can be added into another population. ES and SSGA use this approach to transfer
the main population into a second one that performs variation. The Vary() func-
tion bypasses sorting and filtering, but like Step() it updates the contents of the
population with the new individuals. A separate VariationMode property determines
whether these functions expand the population, replace the population or compete
with their parents. Expanding causes individuals to be cloned prior to variation,
while competition automatically evaluates individuals against their parent and keeps
the best.

The algorithm functions that initialise, associate and control Population instances
are used for the volume measurements and are included in Appendix F. They are
written using elegant C# using modern language constructs (such as extension meth-
ods from System.Linq) rather than attempting to optimise for readability, compati-
bility or minimal code volume, and are intended to be representative of the quantity
of code that is written when using the libraries reviewed in Chapter 5.

6.4.4 C# Programs
As a baseline comparison, full implementations of all the algorithms are created using
C#. These programs do not require any EA libraries and have the same behaviour
as the esec descriptions. They are intended as examples of elegant C# code that
avoid using functional-programming inspired features, preferring imperative loops.
Appendix F includes the full code of these implementations.

6.4.5 Results
Three volumetric measures were taken for each algorithm description. Lines of code
were defined as any line containing letters or numbers; those with purely punctuation
or comments were not counted. Table 6.3 shows the values for each description and
Figure 6.6 shows each count relative to esec. Words of code were each consecutive
run of either letters or digits and decimal points (in regular expressions: “([a-
z]+|[0-9.]+)”). Each word was counted once, and all code comments were ignored.
Table 6.4 contains the counts for each description and Figure 6.7 shows them relative
to esec. Finally, all non-whitespace characters were counted for each description,
excluding comments. Table 6.5 shows the number of characters in each description
and Figure 6.8 shows these relative to esec.

Words of code is the fairest comparison of the three, since it eliminates the bias
due to Python’s typically short variable names and Java’s typically long names, as
well as the balance of operations per line, which varies between languages. Notably,
DE and PSO are very similar in code size across all descriptions, which is largely
due to having most of the algorithm contained within either one or two operators.
(ES is also similar, but has a much simpler implementation and is therefore less

CHAPTER 6. APPLICATION 148

noteworthy.) The other algorithms are able to make much better use of composition
of existing operators, resulting in a significantly reduced amount of text.

Across all measures, esec and ESDL consistently require less code than the other
approaches. Taken as a weak proxy for effort, this implies that ESDL systems require
less effort to create, read and understand than other, equally precise descriptions.
The implication is limited in that a person’s experience with a form of description is
likely to have a greater effect on comprehension or design than size alone, while also
failing to account for the ESDL description being separable from the surrounding
Python code. Presented alone, ESDL suffers less from loss of context than the
equivalent parts, if any, of the other descriptions.

6.5 Chapter Summary
This chapter has discussed the application of ESDL to designing, sharing and imple-
menting EAs. Through two hypothetical stories in Section 6.1, the issues identified
in Chapter 2 were demonstrated and mitigated through the approach presented in
this work.

ESDL can be used to direct the design process when creating an EA, or to provide
a framework for understanding and implementing another description, as discussed
in Section 6.2.1. Sharing operators between algorithms is aided by avoiding the
nomination of a particular metaphor underlying ESDL. Software frameworks can be
based around ESDL, such as esec, described in Section 6.3. Parsing and compiling or
interpreting ESDL allows for a rapid write-test-revise workflow, as well as verifying
that an algorithm presented as discussed in Section 6.2.2 is a correct and complete
description.

Section 6.4 showed that EA experiments using ESDL as a description generally
require less code compared to current libraries and frameworks. The ESDL de-
scriptions were executed with esec, proving that ESDL can correctly and concisely
describe a range of existing algorithms and also that it can be automatically com-
piled in order to compose a working algorithm from a library of operators. The full
code files used for this comparison are included in Appendix F.

The discussion and examples in this chapter demonstrate the second contention
of the original hypothesis: that “a unified model and approach will aid the under-
standing, development, implementation and presentation” of EAs.

CHAPTER 6. APPLICATION 149

0×

1×

2×

3×

4×

5×

6×

ES EP GA DE SSGA PSO

esec ECJ FakeEALib C#

Figure 6.6: Lines of code relative to esec.

0×

1×

2×

3×

4×

5×

6×

ES EP GA DE SSGA PSO

esec ECJ FakeEALib C#

Figure 6.7: Words of code relative to esec.

0×

1×

2×

3×

4×

5×

6×

ES EP GA DE SSGA PSO

esec ECJ FakeEALib C#

Figure 6.8: Characters of code relative to esec.

Table 6.3: Lines of code for each algorithm.
esec ECJ Lib C#

ES 39 49 42 73
EP 17 28 23 61
GA 18 27 23 77
DE 27 59 39 62
SSGA 23 31 32 83
PSO 66 73 65 81

Table 6.4: Words of code for each algorithm.
esec ECJ Lib C#

ES 196 360 280 449
EP 82 220 168 340
GA 79 222 169 445
DE 157 406 264 391
SSGA 93 250 210 480
PSO 375 512 435 453

Table 6.5: Characters of code for each algorithm.
esec ECJ Lib C#

ES 1090 1753 1646 2343
EP 529 958 961 1841
GA 526 1006 991 2237
DE 864 1976 1451 1974
SSGA 620 1164 1207 2399
PSO 1848 3002 2562 2253

CHAPTER 6. APPLICATION 150

151

Chapter 7

Conclusions

This work has described a unified model of Evolutionary Algorithms that
supports algorithms from the three principal antecedents, ES, EP and
GA, as well as other algorithms with similar iterative structures. The
model has been developed into a description language, ESDL, with an
execution model that supports accurate specification of algorithms with
less code than other approaches and in a form that can easily be shared.

7.1 Research Goals
This work set out to test the hypothesis that

Evolutionary Algorithms are a single class of algorithm that no
longer needs the separation resulting from their distinct origins,
and a unified model and approach will aid the understanding,
development, implementation and presentation of these
algorithms.

This section reviews the contributions of this work towards the six questions
posed in Section 1.2.

1. Are there problems with how EAs are designed, implemented and
communicated, and if so, how do these affect practitioners and re-
searchers? Chapter 2 showed that the current approach is negatively affected
by a significant adherence to algorithmic distinctions that are only relevant
historically. This adherence results in assumptions of incompatibility between
algorithms, limited guidance on constructing targeted algorithms, use of in-
efficient algorithm elements and overly specific simulation software. These
problems result in longer research cycles as new software must often be devel-
oped and potentially limit the conception of novel algorithms.

2. What, fundamentally, is an EA? Chapter 2 identified that the separation
between algorithms is purely theoretical and presented a new definition of

CHAPTER 7. CONCLUSIONS 152

EAs based on the general approach and applications of prior work. Chapter 3
developed this model into a full specification suitable for using as a reference
when designing, implementing or presenting an algorithm. Modelling EAs as
an iterative process of variation and reduction on groups of potential solutions
distinguishes EAs from other classes of algorithms while providing a useful
understanding of how the algorithms are applied. Describing EAs as arbitrary
networks of operators provides a model that can easily be described, allows
for reliable interpretation and supports design and implementation.

3. How should the design, implementation and sharing of EAs be ap-
proached? Chapter 3 presented a model of EAs that allows reliable inter-
pretation and understanding, which Chapter 4 extended with a text-based de-
scription language, ESDL, for concisely expressing specific algorithms. Chap-
ter 5 detailed the behavioural interpretation of ESDL to ensure that ESDL
descriptions provide consistent results between human readers and software
compilers. Chapter 6 combined the guidance of chapters 3–5, illustrating the
problems found in Chapter 2 and demonstrating the mitigations provided by
the model and ESDL.

4. Does this model prevent existing algorithms from being described?
Ensuring that existing work is not invalidated is a critical aim, since the defi-
nition of an EA is well understood if not easily expressible. As the model and
ESDL were developed through chapters 3 and 4, descriptions of seven repre-
sentative algorithms (ES, EP, GA, GP, DE, SSGA, PSO) were simultaneously
developed to ensure that existing work was included. In Chapter 6 and Ap-
pendix F, these algorithms were fully implemented using ESDL and shown to
be more concise than alternative forms of description. Chapter 2 noted that
algorithms not always considered to be EAs can also be understood using this
model, which the description of PSO and the hypothetical AMO (Chapter 6)
supports.

5. Does this model solve the problems found by Question 2? The issues
identified in Chapter 2 are the central motivation of this work, and addressing
or mitigating these problems is the aim. Chapter 6 showed that separating
algorithm structure and behaviour provides guidance for constructing a tar-
geted algorithm, for decomposing an algorithm description and for sharing
operators between algorithms previously considered to be incompatible. Us-
ing ESDL with a structured development process or a supporting framework
reduces the development and testing effort, allowing greater flexibility for re-
searchers. Software reuse is supported by clearly defined interactions and re-
duced coupling between components, while decoupling operators and solution
representations clarifies that neither are intrinsic to particular algorithms.

CHAPTER 7. CONCLUSIONS 153

7.2 Contributions
The key contributions of this research work are:

• A conceptual model (Chapter 3), representing EAs as compositions of indi-
viduals, groups, operators and streams. Rather than treating algorithms as
indivisible, the model extracts operators and abstracts the commonalities be-
tween algorithms into individuals, groups and streams. Individual operators
can be defined, shared, exchanged and assessed independently from an al-
gorithm. Entire algorithms can be constructed from operators known to be
suitable for the problem, rather than selecting an algorithm that may or may
not be suited.

• Evolutionary System Definition Language (ESDL, Chapter 4) for describing
the composition and parameterisation of an algorithm. Part programming
language and part description language, ESDL allows EAs to be described
concisely and precisely, reducing the chance of a reader misinterpreting a writ-
ten description when reading or implementing the algorithm. Interpreters and
compilers can be created for ESDL, removing the manual translation step and
allowing simple reuse of published algorithms.

• An execution model (Chapter 5), precisely defining the behaviour and in-
terpretation of ESDL systems in the context of both sequential and parallel
machines. It is designed to guide compiler and interpreter developers while
allowing freedom to differentiate their own work but retain compatibility with
other ESDL implementations.

Software contributions include:
• esec (Chapter 6 and Appendix E), a Python-based EC framework that uses

ESDL as its configuration mechanism. esec includes a large library of operators
and benchmark problems, and allows fast prototyping of novel algorithms. It
also supports reproducible batches for automating a set of experiments.

• esdlc (Appendix C), a Python-based compiler for ESDL that can be extended
to target various platforms. The current version is embedded in esec to pro-
duce Python code, and also supports compilation for GPU using C++ AMP
(Appendix D).

• A proposed standard library (Appendix A) of operators for an ESDL imple-
mentation. Having a shared minimum set allows users of ESDL to use basic
operators with confidence that they always behave the same, regardless of the
implementation used.

CHAPTER 7. CONCLUSIONS 154

7.3 Limitations
This section discusses some limitations of the approaches used in this work, iden-
tifying alternative approaches to achieve more detailed or robust results and the
benefits and restrictions of each. Three specific limitations are covered: the qualita-
tive evaluation of the current approach to EAs, the lack of mathematical formalism
in the description of the model and ESDL, and the purely volumetric comparison
of algorithm descriptions. The potential mitigations described here are presented in
greater detail in Section 7.4.

7.3.1 Qualitative Assessment
Chapter 2 presented an evaluation of issues with designing, implementing and com-
municating EAs. This assessment was structured and based on a wide reading of
recent and historical literature, but did not include any quantitative evaluation.
Such an evaluation would be possible by classifying a large number of publications
by description formats, completeness of algorithm definitions, use of existing soft-
ware and tracing the ancestry of the algorithm defined or used. Such a survey would
provide an objective measure of the scope of issues with the current approach, and
efforts could then be better targeted to the most problematic areas.

However, a fair and reliable survey would require an immense amount of effort,
not least because obtaining a sufficient and objective sample of publications requires
the evaluation of entire conference proceedings and journals. A random sample from
recent conference proceedings (N ∼ 280) was used to test the value of a wider survey,
and found that while “technical reproducibility” is often one of the publication
criteria, work that is not sufficiently detailed to allow accurate reproduction is still
published—independent verification would be necessary to determine the full scope
of this issue. The sample also identified that in a majority of publications simulation
software is not mentioned (∼ 65%); some specified that their software was written
by the researchers themselves (∼ 20%) and the rest identified a publicly available
framework.

Under these circumstances, determining the effect of algorithmic segregation is
infeasible. Surveying researchers is also difficult due to the potentially controversial
nature of the questions raised and the need for a large and fair sample. Assuming
the opposite hypothesis, that algorithm segregation is not an issue, allowed the
qualitative approach with counter-examples that was used in Chapter 2 where a
quantitative assessment would have been impractical.

7.3.2 Informal Language Model
As a field, computer science has well-established approaches to presenting program-
ming language designs, which were deliberately avoided in this work. The use of

CHAPTER 7. CONCLUSIONS 155

computational algebra and formal notation is typically used to demonstrate the
expressiveness of a language and to prove the constraints and limits of a system.
Showing that a language construct can be represented by formalisms such as the
lambda calculus is a useful proof of correctness.

The approach used in this work relies on discussion and demonstrative examples
rather than algebraic reduction and proof. Because the scope of ESDL is deliberately
restricted, deriving the language from a general-purpose algebra (or retrospectively
applying one) does not demonstrate its ability to describe EAs any more than the
mapping to diagrams and executable code in a full-featured programming language
that was used. As a software engineering approach, clearly defined coupling between
components is sufficient to guarantee the interactions, but the specific behaviours
within operators or algorithms as a whole are not within the scope of this work.

However, there are benefits to theoretical analysis of EAs that may be better
supported by a formalised set of interactions. The definitions presented in this work
are suitable for implementation, experimental use and conceptual understanding.
Theoretical analysis should also benefit from the decomposition and separation of
operators, but may need a more formal composition approach than is provided.

7.3.3 Volumetric Analysis
Chapter 6 used a volumetric analysis of a range of algorithm descriptions to demon-
strate the conciseness of unambiguous ESDL descriptions. Such an analysis is
straightforward and easily reproducible and verifiable, but provides limited infor-
mation on the complexity, readability or usability of ESDL. Where text volume is
significantly larger it is fair to infer a slight negative effect on readability, due sim-
ply to the extended reading time required. However, other variables are far more
significant in a usability assessment than size alone.

A better approach to evaluating the benefits of ESDL over other descriptions
would require experiments with human subjects, such as testing for comprehension.
Variables to be considered in such an assessment include the subject’s understanding
of EAs, prior experience with developing or implementing EAs and other algorithms,
pre-existing programming skills, computer science aptitude and learning ability. A
useful usability assessment would require multiple versions of ESDL to be assessed,
which then necessitates accounting for cross-contamination between versions. Find-
ing and controlling a population in order to achieve a statistically relevant result is
the most significant difficulty; the benefits were not considered to be critical to this
thesis, although a formal usability survey remains important future work.

CHAPTER 7. CONCLUSIONS 156

7.4 Future Work
This work is the first exposition of ESDL and its associated conceptual and execution
models. At present, there is one stable implementation (esec) and one prototype.
Ideally, frameworks using ESDL will become available for a range of popular pro-
gramming languages, particularly C++, Java and C#, which are all well-represented
in recent EA research. Providing users with the ability to select a compiler to
match either their preferred language or the interface of existing code is important
to achieving wider use of ESDL, without which the full potential benefit cannot be
realised.

Much work is ongoing in areas where ESDL can provide support. Theoretical
analysis, experimental analysis, parameter tuning and control, network topologies
and applications research can all benefit from a common description language and
frameworks that execute it. Implementing a parser for ESDL is not complicated and
it allows software to support a significant range of algorithms. With large amounts
of research not resulting in reusable software, ESDL can reduce the effort required
from both the researcher and those who later make use of that research.

This section discusses some specific areas for future research, either because they
would benefit from greater coverage than was afforded in this work, or because they
are topics for which ESDL may be able to provide significant benefit.

7.4.1 Tool Support
As with any language, supporting tools can significantly increase writer or developer
productivity. Editors that provide spelling and grammar suggestions are common
for written languages, while programming languages receive assistance with key-
word and name completion, error reporting and parameter information. Debuggers,
profilers and static analysis tools also provide insight into the execution and al-
low developers to perfect their work. ESDL can support such tools at two levels:
creating ESDL descriptions and implementing operators.

Researchers working with ESDL to implement their algorithms would benefit
from editor support to provide assistance with syntax, group names, available op-
erators and parameters. Debugger-like tools could provide introspection into the
algorithm itself, for example, allowing a developer to interactively pause execu-
tion and inspect the contents of groups, modify parameters and retry statements.
Users could identify bottlenecks, poor performing or incorrectly specified operators,
validate assumptions and make improvements to an algorithm that may otherwise
require many experiments to discover. With consistent operator implementations,
debugging an ESDL system is platform independent, retaining the benefit of trans-
ferring a description from a debuggable platform to a high-performance one.

CHAPTER 7. CONCLUSIONS 157

Debuggers and profilers for those implementing operators can assist with produc-
ing stable and performant components. Depending on the implementation language,
such tools may already be available, though are not likely to have any awareness of
ESDL and as a result cannot yet use system definitions. Test-benches for simplifying
verification of operator behaviours could assist with the guarantees of correctness
that those using operators need for their own work. These tools also apply to eval-
uators, generators and individual representations, all of which require development
work outside of that written in ESDL.

Another set of tools could directly support those who are publishing algorithms
developed with ESDL. The LATEX styling used in this work is one example, while
other tools might produce diagrams, tables of results and graphs directly from a
system definition. Automating these publication preparation tasks would allow re-
searchers to focus on tasks that cannot be automated and reduce the time required
for each publication.

7.4.2 Distributed Implementations
An obvious way to improve the execution performance of an algorithm is to dis-
tribute processing across multiple computers or processors. Parallelism is inherent
in EAs and various approaches have been used to distribute the processing. ESDL
is modelled as a network of communicating operators, which matches many existing
distributed processing models and makes it safe to execute parts of operator chains
or independent operators in parallel.

There is a lot of potential for designing a framework that intelligently distributes
operators from an ESDL system. For example, if an algorithm needs to use a
particular processing node for a variation operator, but only for one individual,
rather than transferring the entire group across a low-bandwidth connection, the
selection may be performed on the same processor as the group and only transmit
the selected individual (as shown in Figure 7.1). With sufficient metadata, such
optimisations could be performed automatically, though a distributed framework
may also allow manual resource allocations.

Currently, distributing EAs across separate processors usually requires manual
intervention. ESDL’s compositional approach embeds enough information about the
algorithm in the description to enable automatic parallelisation of EAs. With most
consumer hardware containing multiple processors and specialised supercomputers
providing far greater parallelism, support for ESDL would allow greater utilisation
for a larger group of practitioners.

CHAPTER 7. CONCLUSIONS 158

Node A

Node B

100 individuals

Select 1

Variation

Slow transfer

Node A

Node B

Select 1

Variation

Slow transfer

100 individuals

Figure 7.1: Splitting operators across distributed processing nodes.

7.4.3 Language Extensions
While ESDL naturally supports multiple populations, creating large networks of
coarse-grained EAs requires significant duplication within the definition, in effect,
writing each deme separately. Part of this limitation occurs because of the nature of
the fixed network. A potential solution to this could be an implementation that ex-
ecutes multiple blocks in parallel—a literal interpretation of the island populations
concept. Inter-algorithm communication would be necessary to transfer selected
individuals between the otherwise isolated systems, ideally in a form that allowed
systems to be replicated, for example, providing a single ESDL block and letting the
framework manage hundreds or thousands of instances in various topological struc-
tures. Pragmas are deliberately included in ESDL to allow this form of extension
without having to resort to non-standard language modifications.

A second pattern that may benefit from new syntax is similar to ‘for each’ loops
in various programming languages. The model currently supports a simple approach:
“for each individual in the group, apply this operator.” However, a potential varia-
tion that is not supported is: “for each individual in the group, apply these ESDL
statements.” Such a construct would enable operators to be composed from other
operators within the definition itself, allowing operations such as “for each individual
in the group, create three variations and retain the best.” While the ESDL state-
ments “FROM a SELECT b USING repeat_each(count=3), vary” and “FROM b SELECT (n) c

USING best” describe a similar idea, it does not guarantee that exactly one variation
of each individual in group a will exist in group c. A ‘for each’ style construct would
be able to guarantee this, as well as supporting more complex variation than a single
operator.

7.4.4 Theoretical Formalism
Section 7.3.2 discussed the limitations of the informal language model with respect
to defining ESDL. While the restricted scope and behaviours of ESDL reduce the

CHAPTER 7. CONCLUSIONS 159

need for a formal definition in order to describe a correct and useful language, theo-
retical analysis is likely to depend on formally defining the composition of operators.
Producing a formal composition model of ESDL may be essential to support pure
theoretical analysis of EAs, particularly with respect to deriving global algorithm
properties from the known properties of individual contributing components. An un-
derstanding of the overall effect a particular operator has on a system is beneficial
to the ability to construct algorithms that are targeted to specific problems.

7.4.5 Usability Study
As discussed in Section 7.3.3, the analysis of ESDL performed in this work is limited
and does not fully investigate the usability of ESDL. While the model and language
are sufficient, a proper usability study could identify behaviours of the model or
keywords and syntax in ESDL that are unintuitive or convoluted. The results of
such a study may be used to improve ESDL or identify areas in need of extra
explanation or documentation.

A usability study would likely require a significant group of users in order to con-
trol for varying backgrounds, especially with respect to prior experience with EAs
and general programming. Qualitative assessments on a broad scale require account-
ing for individual biases, with preliminary investigations suggesting the potential for
resistance to a new approach due to strong familiarity with another. A potentially
beneficial approach may involve using ESDL and the model in teaching EAs, where
existing syllabi are available as a control and the prior experience of student par-
ticipants is better controlled than among active researchers. Existing assessments
and surveys or interviews could provide useful qualitative and quantitative feedback
under these conditions.

7.5 Final Words
While the most significant contribution of this work is the EA model, the most
useful is ESDL. The ability to model, describe and implement EAs in an efficient,
unambiguous, portable form could transform the nature of sharing in the EC field.
At present, we are not aware of any algorithms generally considered to be EAs that
cannot be described with ESDL, and there are many algorithms that are not EAs
that can be described. This work describes ESDL in its current form, but is in
no way intended to prevent future changes to the language that may be necessary
to meet the needs of an actively evolving field. It is hoped that ESDL can help
transfer the time spent implementing, debugging and testing software into time
spent on algorithm design and validation, where it can help the field continue to
evolve and develop.

CHAPTER 7. CONCLUSIONS 160

161

Bibliography

[1] H. Abelson and G. J. Sussman, Structure and Interpretation of Computer
Programs. MIT Press, 1986. 31, 32

[2] M. Affenzeller, “New variants of genetic algorithms applied to problems of
combinatorial optimization,” in Proceedings of the EMCSR 2002, vol. 1, 2002,
pp. 75–80. 133

[3] E. Alba and J. M. Troya, “A survey of parallel distributed genetic
algorithms,” Complexity, vol. 4, pp. 31–52, 1999. 16

[4] J. Alcalá-Fernández, L. Sánchez, S. García, M. J. del Jesus, S. Ventura, J. M.
Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C. Fernández, and
F. Herrera, “KEEL: a software tool to assess evolutionary algorithms for data
mining problems,” Soft Computing, vol. 13, pp. 307–318, February 2009. 21

[5] M. G. Arenas, P. Collet, A. E. Eiben, M. Jelasity, J. J. Merelo, B. Paechter,
M. Preuß, and M. Schoenauer, “A framework for distributed evolutionary
algorithms,” in Parallel Problem Solving from Nature – PPSN VII, 7th
International Conference, vol. 2439. Springer, 2002, pp. 665–675. 21

[6] H. Aydt, S. J. Turner, C. Wentong, M. Y. H. Low, O. Yew-Soon, and
R. Ayani, “Toward an evolutionary computing modeling language,” IEEE
Transactions on Evolutionary Computation, vol. 15, pp. 230–247, April 2011.
18, 64

[7] T. Bäck, Evolutionary Algorithms in Theory and Practice. Oxford University
Press, 1996. 11, 14, 15, 16, 19, 41, 45, 48, 50

[8] T. Bäck, F. Hoffmeister, and H.-P. Schwefel, “A survey of evolution
strategies,” in Proceedings of the 4th International Conference on Genetic
Algorithms. Morgan Kaufmann Publishers, 1991, pp. 2–9. xv, 9, 11

[9] D. Berlinski, Infinite Ascent. Modern Library, 2005. 33

[10] M. Brameier and W. Banzhaf, Linear genetic programming. Springer, 2007.
16

BIBLIOGRAPHY 162

[11] H.-J. Bremermann, “Optimization through evolution and recombination,”
Self-Organizing Systems, pp. 93–106, 1962. 13

[12] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes.
Lulu, 2011. 45, 48, 50, 78, 88

[13] E. Cantú-Paz, “A survey of parallel genetic algorithms,” Calculateurs
paralleles, reseaux et systems repartis, pp. 141–171, 1998. 250

[14] P. Collet, E. Lutton, M. Schoenauer, and J. Louchet, “Take it EASEA,” in
Parallel Problem Solving from Nature – PPSN VI. Springer, 2000, pp.
891–901. 21, 63

[15] D. Dagum, “Introducing C++ accelerated massive parallelism (C++ AMP),”
June 2011,
http://blogs.msdn.com/b/vcblog/archive/2011/06/15/introducing-amp.aspx.
252

[16] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive
systems,” Ph.D. dissertation, University of Michigan, 1975. 13, 14, 15

[17] ——, “Genetic algorithms are NOT function optimizers,” Foundations of
genetic algorithms, vol. 2, pp. 5–17, 1993. 23

[18] ——, “Two grand challenges for EC,” Frontiers of Evolutionary Computation,
pp. 37–51, 2004. 17, 21

[19] ——, Evolutionary Computation: A Unified Approach. MIT Press, 2006. 17,
18, 45, 48

[20] ——, “Evolutionary computation: a unified approach,” in Proceedings of the
12th annual conference companion on Genetic and evolutionary computation.
ACM, New York, United States, 2010, pp. 2289–2302. 17, 18

[21] K. A. De Jong and W. M. Spears, “On the state of evolutionary
computation,” in Proceedings of the Fifth International Conference on Genetic
Algorithms, 1993, pp. 442–459. 17

[22] S. Debattisti, N. Marlat, L. Mussi, and S. Cagnoni, “Implementation of a
simple genetic algorithm within the CUDA architecture,” in Poster session
presented at: GECCO ’09: Proceedings of the 11th annual conference
companion on Genetic and evolutionary computation conference. ACM, New
York, United States, 2009. 251

http://blogs.msdn.com/b/vcblog/archive/2011/06/15/introducing-amp.aspx

BIBLIOGRAPHY 163

[23] DOLPHIN Project Team, “Paradiseo,” 2012, http://paradiseo.gforge.inria.fr.
62

[24] M. Dorigo, M. Birattari, and T. Stützle, “Ant colony optimization,” IRIDIA,
Tech. Rep. TR/IRIDIA/2006-023, 2006. 16

[25] M. Dorigo, V. Maniezzo, and A. Colorni, “Positive feedback as a search
strategy,” Polytechnic University of Milano, Tech. Rep., 1991. 283

[26] S. Dower, “ESDL multiblock extension proposal,” Swinburne University of
Technology, Tech. Rep. TR/CIS/2010/6, 2010. 76

[27] ——, “Bitonic sort for C++ AMP,” Swinburne University of Technology,
Tech. Rep. TR/CIS/2012/1, 2012. 251

[28] S. Dower and C. J. Woodward, “ESDL: a simple description language for
population-based evolutionary computation,” in Proceedings of the 13th
Annual Genetic and Evolutionary Computation Conference, GECCO 2011.
ACM, New York, United States, 2011, pp. 1045–1052. 21

[29] A. E. Eiben, “Principled approaches to tuning EA parameters,” in
Tutorials—IEEE Congress on Evolutionary Computation (CEC 2009), 2009.
18, 21

[30] A. E. Eiben and M. Jelasity, “A critical note on experimental research
methodology in EC,” in Proceedings of the 2002 Congress on Evolutionary
Computation. IEEE Press, 2002, pp. 582–587. 20, 21

[31] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Springer, 2003. 18, 41, 45, 55, 76

[32] D. B. Fogel, Evolutionary Computation: The Fossil Record. Wiley-IEEE
Press, 1998. 17

[33] ——, Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. IEEE Press, 2007. xv, 7, 8, 12, 17, 48, 49, 79

[34] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial intelligence through
simulated evolution. John Wiley & Sons, Inc., 1966. 11

[35] M. Fowler, Domain-Specific Languages. Addison Wesley, 2010. 60, 61, 63, 64,
234

[36] A. S. Fraser, “Simulation of genetic systems by automatic digital computers.
I. Introduction,” Australian Journal of Biological Sciences, vol. 10, pp.
484–491, 1957. 13

http://paradiseo.gforge.inria.fr

BIBLIOGRAPHY 164

[37] ——, “Simulation of genetic systems by automatic digital computers. II.
Effects of linkage rates of advance under selection,” Australian Journal of
Biological Sciences, vol. 10, pp. 492–499, 1957. 13

[38] C. Gagné and M. Parizeau, “Genericity in evolutionary computation software
tools: Principles and case-study,” International Journal on Artificial
Intelligence Tools, vol. 15, pp. 173–194, 2006. 21

[39] R. Galar, “Evolutionary search with soft selection,” Biological Cybernetics,
vol. 60, pp. 357–364, 1989. 13

[40] M. Gallagher and B. Yuan, “A general-purpose tunable landscape generator,”
IEEE Transactions on Evolutionary Computation, vol. 10, pp. 590–603, 2006.
283

[41] D. Garlan and M. Shaw, “An introduction to software architectures,”
Advances in software engineering and knowledge engineering, vol. 1, pp. 1–40,
1993. 99

[42] Geneura Team, “Evolvable objects,” http://eodev.sourceforge.net/. 20, 62

[43] J. J. Grefenstette, “Optimization of control parameters for genetic
algorithms,” IEEE Transactions on Systems, Man and Cybernetics, vol. 16,
pp. 122–128, 1986. 15

[44] K. Gregory, “Overview and C++ AMP approach,” September 2011,
http://www.gregcons.com/CppAmp/OverviewAndCppAMPApproach.pdf.
250, 252

[45] S. Harding and W. Banzhaf, “Fast genetic programming on GPUs,” in
Genetic Programming. Springer, 2007, pp. 90–101. 250

[46] J. H. Holland, Adaptation in Natural and Artificial Systems. University of
Michigan, Ann Arbor, Michigan, United States, 1975. 13, 14, 15

[47] ——, Adaptation in Natural and Artificial Systems. MIT Press, 1992. 13, 51

[48] J. N. Hooker, “Testing heuristics: We have it all wrong,” Journal of
Heuristics, vol. 1, pp. 33–42, 1995. 20, 21, 43

[49] L. Howes and D. Thomas, “Efficient random number generation and
application using CUDA,” in GPU Gems 3. Addison Wesley, 2007. 261

[50] J. Hughes, “Why functional programming matters,” The computer journal,
vol. 32, pp. 98–107, 1989. 45

http://eodev.sourceforge.net/
http://www.gregcons.com/CppAmp/OverviewAndCppAMPApproach.pdf

BIBLIOGRAPHY 165

[51] ISO/IEC1̃4882:2011, “Information technology – programming languages –
C++,” 2011. 263

[52] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Neural
Networks, 1995. Proceedings., IEEE International Conference on, vol. 4.
IEEE, 1995, pp. 1942–1948. 16, 19

[53] T. Kovacs and R. Egginton, “On the analysis and design of software for
reinforcement learning, with a survey of existing systems,” Machine Learning,
vol. 84, pp. 7–49, July 2011. 18, 20, 45, 62

[54] J. R. Koza, Genetic Programming: On The Programming of Computer
Programs by Natural Selection. MIT Press, 1992. 16, 53

[55] ——, Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, 1994. 276

[56] H. J. Lichtfuß, “Evolution eines rohrkrümmers,” Master’s thesis, Technische
Universität Berlin, 1965. 8

[57] S.-H. Liu, A. Cardenas, X. Xiong, M. Mernik, B. R. Bryant, and J. Gray,
“Can domain-specific languages be implemented by service-oriented
architecture?” in Proceedings of the 2010 ACM Symposium on Applied
Computing. ACM, New York, United States, 2010, pp. 2491–2492. 63

[58] S.-H. Liu, M. Mernik, and B. R. Bryant, “Parameter control in evolutionary
algorithms by domain-specific scripting language PPCEA,” in Proceedings of
the 1st International Conference on Bioinspired Optimization Methods and
their Applications, 2004, pp. 41–50. xix, 63

[59] A. J. Lockett and R. Miikkulainen, “Real-space evolutionary annealing,” in
GECCO ’11: Proceedings of the 13th annual conference on Genetic and
evolutionary computation. ACM, New York, United States, 2011, pp.
1179–1186. 19

[60] S. Luke, “ECJ,” http://cs.gmu.edu/~eclab/projects/ecj/. 20, 30, 62, 146

[61] M. Lumpe, “A pi-calculus based approach for software composition,” Ph.D.
dissertation, University of Bern, 1999. 92

[62] O. Maitre, L. Baumes, N. Lachiche, A. Corma, and P. Collet, “Coarse grain
parallelization of evolutionary algorithms on GPGPU cards with EASEA,” in
GECCO ’09: Proceedings of the 11th annual conference on Genetic and
evolutionary Computation. ACM, New York, United States, 2009, pp.
1403–1410. 21, 63, 250

http://cs.gmu.edu/~eclab/projects/ecj/

BIBLIOGRAPHY 166

[63] S. McConnell, Code Complete. Microsoft Press, 2004. 62

[64] M. Might, “The CRAPL: an academic-strength open source license.” 45

[65] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in Genetic
Programming, European Conference, Edinburgh, Scotland, UK, April 15-16,
2000, Proceedings, vol. 1802. Springer, 2000, pp. 121–132. 16

[66] A. Moraglio, “Towards a geometric unification of evolutionary algorithms,”
Ph.D. dissertation, University of Essex, November 2007. 18, 19, 20

[67] F. Nadi and A. T. Khader, “A parameter-less genetic algorithm with
customized crossover and mutation operators,” in GECCO ’11: Proceedings of
the 13th annual conference on Genetic and evolutionary computation. ACM,
New York, United States, 2011, pp. 901–908. 19

[68] O. Nierstrasz and D. Tsichritzis, “Component-oriented software technology,”
in Object-Oriented Software Composition. Prentice Hall, 1995, pp. 3–28. 33,
35, 92

[69] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of permutation
crossover operators on the travelling salesman problem,” in Proceedings of the
Second International Conference on Genetic Algorithms on Genetic
algorithms and their application, 1987, pp. 224–230. 133

[70] M. O’Neill and C. Ryan, Grammatical Evolution. Kluwer Academic
Publishers, 2003. 16

[71] M. O’Neill, C. Ryan, M. Keijzer, and M. Cattolico, “Crossover in
Grammatical Evolution,” Genetic Programming and Evolvable Machines,
vol. 4, no. 1, March 2003. 18

[72] Oxford Dictionaries, “evolution,” 2012,
http://oxforddictionaries.com/definition/evolution. 25

[73] T. Painter, “Grammatical Evolution in Python,” 2006. 45

[74] P. Pospichal, J. Jaros, and J. Schwarz, “Parallel genetic algorithm on the
CUDA architecture,” in Applications of Evolutionary Computation. Springer,
2010, pp. 442–451. 251

[75] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach to
function optimization,” in Proceedings of the The Third Conference on
Parallel Problem Solving from Nature, 1994, pp. 249–257. 16, 39

http://oxforddictionaries.com/definition/evolution

BIBLIOGRAPHY 167

[76] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution.
Springer, 2005. 16, 39, 45, 51

[77] I. Rechenberg, “Cybernetic solution path of an experimental problem,”
Technische Universität Berlin, Tech. Rep., 1965. 8

[78] ——, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution. Friedrich Frommann Verlag, 1973. 8, 9, 11

[79] J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic
algorithms,” in Proceedings of the 1st International Conference on Genetic
Algorithms. L. Erlbaum Associates Inc., 1985, pp. 93–100. 19

[80] H.-P. Schwefel, “Kybernetische evolution als strategie der experimentellen
forschung in der strömungstechnik,” Master’s thesis, Technische Universität
Berlin, 1965. 9

[81] ——, “Projekt MHD-Staustrahlrohr: Experimentelle optimierung einer
zweiphasendüse, teil I,” Technischer Bericht 11.034/68, 35, AEG
Forschungsinstitut, Berlin, Germany, Tech. Rep., 1968. 8

[82] ——, “Evolutionsstrategie und numerishe optimierung,” Ph.D. dissertation,
Technische Universität Berlin, 1975. 48

[83] ——, Numerical Optimization of Computer Models. Wiley, 1981. 9, 11

[84] S. K. Smit and A. E. Eiben, “Comparing parameter tuning methods for
evolutionary algorithms,” in Proceedings of the Eleventh conference on
Congress on Evolutionary Computation. IEEE Press, 2009, pp. 399–406. 18

[85] I. Sommerville, Software Engineering. Addison Wesley, 2010. 20

[86] W. M. Spears and V. Anand, “A study of crossover operators in genetic
programming,” in ISMIS ’91: Proceedings of the 6th International Symposium
on Methodologies for Intelligent Systems. Springer, 1991, pp. 409–418. 18

[87] R. Stallman, “GNU make: A program for directing recompilation,” Free
Software Foundation, Tech. Rep., 1994. 61

[88] V. Stodden, “The scientific method in practice: Reproducibility in the
computational sciences,” MIT Sloan School of Management, Tech. Rep.,
February 2010. 20, 62

[89] R. M. Storn and K. V. Price, “Differential evolution: A simple and efficient
adaptive scheme for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, pp. 341–359, 1997. 16

BIBLIOGRAPHY 168

[90] H. Sutter, “The free lunch is over,” Dr. Dobb’s Journal, vol. 30, March 2005.
249

[91] ——, “Welcome to the jungle,” 2011,
http://herbsutter.com/welcome-to-the-jungle/. 249

[92] C. Szyperski, D. Gruntz, and S. Murer, Component software: beyond
object-oriented programming. Addison Wesley, 2002. 169

[93] R. Vasa, “Growth and change dynamics in open source software systems,”
Ph.D. dissertation, Swinburne University of Technology, 2010. 33

[94] C. B. Veenhuis, K. Franke, and M. Köppen, “A semantic model for
evolutionary computation,” in 6th International Conference on Soft
Computing, 2000. xix, 63, 64

[95] S. Wagner and M. Affenzeller, “Heuristiclab: A generic and extensible
optimization environment,” in Adaptive and Natural Computing Algorithms.
Springer, 2005, pp. 538–541. 21, 63

[96] D. Whitley, T. Starkweather, and D. Shaner, “The traveling salesman and
sequence scheduling: Quality solutions using genetic edge recombination,” in
Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991, pp. 350–372.
133

[97] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1, pp.
67–82, 1997. 9, 19

[98] C. J. Woodward, “Ecosystems, complexity, topology and evolutionary
computation,” Ph.D. dissertation, Swinburne University of Technology.
Faculty of Information and Communication Technologies, 2010. 21, 271

[99] M. Zubair, “Design patterns for programmable parameter control for
evolutionary algorithms,” Master’s thesis, Department of Computer Science,
California State University, December 2009. 63

http://herbsutter.com/welcome-to-the-jungle/

169

Appendix A

Standard Library

A.1 Overview
This section presents a suggested library of operators. It is expected that imple-
mentations supporting ESDL will provide a collection of operators, partly for users’
convenience but also to enable operator-specific optimisations. The library here is
not mandated, and implementations of ESDL are not required to provide any or all
of these components. However, for the full benefits of ESDL to be apparent, the
effort to produce an executable algorithm from a description must be minimised.
A common set of available operators goes a significant way towards achieving the
critical mass of components required for a successful framework [92].

A number of individual representations are also suggested, primarily to allow
representation-specific operators to be specified with context. A perhaps notable
exception from this section is the tree-based representation used in GP. This repre-
sentation is highly algorithm-specific: implementations that wish to provide it are
welcome to, but it is not suitable for inclusion in a standard library.

All probabilities are in the interval [0, 1] and are tested against a random number
selected in the interval [0, 1). If the random number is less than the probability, it
is considered to be met.

Reference implementations are provided using Python as a form of pseudocode;
actual implementations should exhibit the same behaviour but are unlikely to use the
code without modification. The yield statement indicates that the value specified
is next in the result stream. This code assumes the objects representing individuals
can be compared directly, with fitter individuals comparing as less-than.

APPENDIX A. STANDARD LIBRARY 170

A.2 Selectors

A.2.1 Repeated
Creates an infinite stream from a source stream by concatenating itself. The order
of individuals is unchanged.

Repeated signature.

repeated

Repeated implementation in Python.

def repeated(source):
group = []
for indiv in source:

yield indiv
group.append(indiv)

while True:
for indiv in group:
yield indiv

A.2.2 Repeat Each
Creates a stream from a source stream by repeating each individual the specified
number of times. Repetitions are adjacent.

Repeat Each signature.

repeat_each(count=2)

Repeat Each parameters.

Name Default Range Description
count 2 [1,∞) The number of times to repeat each individual.

Repeat Each implementation in Python.

def repeat_each(source, count):
for indiv in source:

for _ in range(count):
yield indiv

APPENDIX A. STANDARD LIBRARY 171

A.2.3 Best
Creates a stream from a finite source stream by ordering the individuals by fitness,
descending. The first individual is the fittest and the last is the least fit.

Best signature.

best

Best implementation in Python.

def best(source):
return sorted(source)

A.2.4 Worst
Creates a stream from a finite source stream by ordering the individuals by fitness,
ascending. The first individual is the least fit and the last is the fittest.

Worst signature.

worst

Worst implementation in Python.

def best(source):
return sorted(source, reverse=True)

APPENDIX A. STANDARD LIBRARY 172

A.2.5 Uniform Random
Creates an infinite stream from a finite source stream by ordering the individuals
randomly. Individuals may be returned more than once by this selector.

Uniform Random signature.

uniform_random

Uniform Random implementation in Python.

from random import randrange

def uniform_random(source):
group = list(source)
while True:

yield group[randrange(len(group))]

A.2.6 Uniform Shuffle
Creates a stream from a finite source stream by ordering the individuals randomly.
Individuals are only returned once by this selector.

Uniform Shuffle signature.

uniform_shuffle

Uniform Shuffle implementation in Python.

from random import randrange

def uniform_shuffle(source):
group = list(source)
while group:

yield group.pop(randrange(len(group)))

APPENDIX A. STANDARD LIBRARY 173

A.2.7 Rank Proportional
Creates a stream from a finite source stream by selecting individuals with a probabil-
ity proportional to their rank within the source. If the with_replacement parameter
is true or without_replacement is false, the resulting stream will be infinite.

Rank Proportional signature.

rank_proportional(expectation=1.1, invert=false,
with_replacement=false, without_replacement=true)

Rank Proportional parameters.

Name Default Range Description
expectation 1.1 [1.0, 2.0] The relative probability of

selecting the fittest individual.
invert False {True,False} If true, the rankings are

reversed and less fit individuals
are more likely to be selected.

with_replacement True {True,False} If true, individuals may be
selected multiple times. Setting
without_replacement to true
implies that this is false.

without_replacement False {True,False} If true, individuals may only be
selected once. Setting
with_replacement to false implies
that this is true.

APPENDIX A. STANDARD LIBRARY 174

Rank Proportional implementation in Python.

from random import random

def rank_proportional(source, expectation, invert,
with_replacement, without_replacement):

group = sorted(source, reverse=invert)
size = len(group) # assume size > 1
wheel = [(expectation - 2.0 * rank * (expectation-1.0) / (size-1.0),

indiv) for rank, indiv in enumerate(group)]
total = sum(i[0] for i in wheel)

while wheel:
p = random() * total
i = 0
while i < len(wheel) and p > wheel[i][0]:
p -= wheel[i][0]
i += 1

if i >= len(group): i = len(group) - 1

if with_replacement and not without_replacement:
yield wheel[i][1]

else:
prob, indiv = wheel.pop(i)
total -= prob
yield indiv

APPENDIX A. STANDARD LIBRARY 175

A.2.8 Rank-based Stochastic Uniform Sampling
Creates an infinite stream from a finite source stream by selecting individuals pro-
portionally to their rank within the source. The number of intended selections is
provided to determine the distribution; taking more than this amount of individuals
selects from the group repeatedly.

Rank SUS signature.

rank_sus(expectation=1.1, mu=0)

Rank SUS parameters.

Name Default Range Description
expectation 1.1 [1.0, 2.0] The relative probability of selecting the

fittest individual.
mu 0 [0,∞) The number of selections to be made. If zero,

use the size of the source stream.

Rank SUS implementation in Python.

from random import random

def rank_sus(source, expectation, mu):
group = sorted(source)
size = len(group) # assume size > 1
wheel = [(expectation - 2.0 * rank * (expectation-1.0) / (size-1.0),

indiv) for rank, indiv in enumerate(group)]
total = sum(i[0] for i in wheel)
if mu <= 0: mu = size

p_delta = total / mu
p_next = wheel[i][0]
p = random() * p_delta
i = 0
while True:

while p > p_next:
i = (i + 1) % size
p_next += wheel[i][0]

yield wheel[i][1]
p += p_delta

APPENDIX A. STANDARD LIBRARY 176

A.2.9 Tournament
Creates a stream from a finite source stream by selecting the best of a pool of
k random individuals repeatedly. A greediness factor adds a probability of not
selecting the fitter individual.

Tournament signature.

tournament(k=2, greediness=1.0, with_replacement=true, without_replacement=false)

Tournament parameters.

Name Default Range Description
k 2 [2,∞) The size of pool to use.
greediness 1.0 [0.0, 1.0] The probability of selecting the

best individual in the pool. If
not met, the first individual
chosen for the pool is selected.

with_replacement True {True,False} If true, individuals may be
selected multiple times. Setting
without_replacement to true
implies that this is false.

without_replacement False {True,False} If true, individuals may only be
selected once. Setting
with_replacement to false implies
that this is true.

APPENDIX A. STANDARD LIBRARY 177

Tournament implementation in Python.

from random import random, randrange

def tournament(source, k, greediness, with_replacement, without_replacement):
group = list(source)

while group:
pool = [randrange(len(group)) for _ in range(k)]
if greediness >= 1.0 or random() < greediness:
winner = max(pool, key=lambda i: group[i].fitness)

else:
winner = pool[0]

if with_replacement and not without_replacement:
yield group[winner]

else:
yield group.pop(winner)

APPENDIX A. STANDARD LIBRARY 178

A.2.10 Fitness Proportional
Creates a stream from a finite source stream by selecting individuals with a prob-
ability proportional to their normalised fitness. If the with_replacement parameter
is true or without_replacement is false, the resulting stream will be infinite. This
operator is only useful where fitnesses are simple numeric values and more-positive
represents fitter.

Fitness Proportional signature.

fitness_proportional(offset=null, with_replacement=true, without_replacement=false)

Fitness Proportional parameters.

Name Default Range Description
offset Null Group A group where the first

individual’s fitness should be
subtracted from all fitnesses as
part of normalisation. If
omitted, the least-fit individual
from the source stream is used;
this individual will then have a
selection probability of zero.

with_replacement True {True,False} If true, individuals may be
selected multiple times. Setting
without_replacement to true
implies that this is false.

without_replacement False {True,False} If true, individuals may only be
selected once. Setting
with_replacement to false
implies that this is true.

APPENDIX A. STANDARD LIBRARY 179

Fitness Proportional implementation in Python.

from random import random

def fitness_proportional(source, offset, with_replacement, without_replacement):
group = sorted(source)
min_fitness = (offset[0] if offset else group[-1]).fitness
wheel = [(indiv.fitness - min_fitness, indiv) for indiv in group]
total = sum(i[0] for i in wheel)

while wheel:
p = random() * total
i = 0
while i < len(wheel) and p > wheel[i][0]:
p -= wheel[i][0]
i += 1

if i >= len(group): i = len(group) - 1

if with_replacement and not without_replacement:
yield wheel[i][1]

else:
prob, indiv = wheel.pop(i)
total -= prob
yield indiv

APPENDIX A. STANDARD LIBRARY 180

A.2.11 Fitness-based Stochastic Uniform Sampling
Creates an infinite stream from a finite source stream by selecting individuals propor-
tionally to their normalised fitness. The number of intended selections is provided
to determine the distribution; taking more than this amount of individuals selects
from the group repeatedly.

Fitness SUS signature.

fitness_sus(offset=null, mu=0)

Fitness SUS parameters.

Name Default Range Description
offset Null Group A group where the first individual’s fitness should

be subtracted from all fitnesses as part of
normalisation. If omitted, the least-fit individual
from the source stream is used; this individual will
then have a selection probability of zero.

mu 0 [0,∞) The number of selections to be made. If zero, use
the size of the source stream.

Fitness SUS implementation in Python.

from random import random

def fitness_sus(source, offset, mu):
group = sorted(source)
size = len(group)
min_fitness = (offset[0] if offset else group[-1]).fitness
wheel = [(indiv.fitness - min_fitness, indiv) for indiv in group]
total = sum(i[0] for i in wheel)
if mu <= 0: mu = size

p_delta = total / mu
p_next = wheel[i][0]
p = random() * p_delta
i = 0
while True:

while p > p_next:
i = (i + 1) % size
p_next += wheel[i][0]

yield wheel[i][1]
p += p_delta

APPENDIX A. STANDARD LIBRARY 181

A.3 Filters

A.3.1 Unique
Removes duplicate individuals from a stream. The duplicates filter is the inverse of
this filter.

Unique signature.

unique

Unique implementation in Python.

def unique(source):
seen = set()
for indiv in source:

if indiv not in seen:
yield indiv
seen.add(indiv)

A.3.2 Duplicates
Removes the first instance of each individual from a stream; only duplicates are
included in the result. The unique filter is the inverse of this filter.

Duplicates signature.

duplicates

Duplicates implementation in Python.

def duplicates(source):
seen = set()
for indiv in source:

if indiv in seen:
yield indiv

else:
seen.add(indiv)

APPENDIX A. STANDARD LIBRARY 182

A.3.3 Legal
Removes individuals that are not suitable based on constraints built into either the
representation or the evaluator. Specification of these constraints is implementation
defined. The illegal filter is the inverse of this filter.

Legal signature.

legal

Legal implementation in Python.

def legal(source):
for indiv in source:

if indiv.legal():
yield indiv

A.3.4 Illegal
Removes individuals that meet constraints built into either the representation or the
evaluator. Specification of these constraints is implementation defined. The legal

filter is the inverse of this filter.

Illegal signature.

illegal

Illegal implementation in Python.

def illegal(source):
for indiv in source:

if not indiv.legal():
yield indiv

APPENDIX A. STANDARD LIBRARY 183

A.4 Joiners

A.4.1 Tuples
Associates individuals by index within each source stream. The length of the result-
ing group will be the same as the length of the shortest source.

Tuples signature.

tuples

Tuples implementation in Python.

def tuples(sources):
iters = [iter(s) for s in sources]
while True:

yield JoinedIndividual([next(i) for i in iters])

APPENDIX A. STANDARD LIBRARY 184

A.4.2 Random Tuples
Associates each individual in the first source stream with a randomly selected in-
dividual from each other stream. If the distinct parameter is specified, individuals
are not associated with another at a matching index. In cases where this is impossi-
ble (more indexes are required than are available), implementations may either fail
completely or use non-unique indexes. All streams must be finite length.

Random Tuples signature.

random_tuples(distinct=false)

Random Tuples parameters.

Name Default Range Description
distinct False {True,False} True to attempt to use unique indexes for

each component individual from each
source stream.

Random Tuples implementation in Python.

from random import randrange

def random_tuples(sources, distinct):
groups = [list(s) for s in sources]
limits = [len(g) for g in groups]
for i in range(len(groups[0])):

indexes = [i]
for g in groups[1:]:
j = randrange(len(g))
while distinct and j in indexes:

j = randrange(len(g))
indexes.append(j)

yield JoinedIndividual([g[i] for g, i in zip(groups, indexes)])

APPENDIX A. STANDARD LIBRARY 185

A.5 Variation Operators

A.5.1 Mutate Random
Creates a stream of individuals by replacing zero or more adjacent elements in
each individual in the source stream with a random value. This operator requires
overloading for different representations but the interface should be the same or a
superset of that shown here.

Mutate Random signature.

mutate_random(per_indiv_rate=1.0, per_gene_rate=0.1, genes=0)

Mutate Random parameters.

Name Default Range Description
per_indiv_rate 1.0 [0.0, 1.0] The probability of each individual being

varied. If not met, the individual is
included in the result stream unmodified.

per_gene_rate 1.0 [0.0, 1.0] The probability of each element being
modified.

genes 0 [0,∞) The exact number of elements in each
individual to be modified. If zero,
per_gene_rate is used instead.

APPENDIX A. STANDARD LIBRARY 186

Mutate Random implementation in Python.

from random import randrange, random

Assuming binary-valued individuals
def mutate_random(source, per_indiv_rate, per_gene_rate, genes):
if per_indiv_rate <= 0 or (per_gene_rate <= 0 and genes <= 0):

return source

for indiv in source:
if per_indiv_rate >= 1.0 or random() < per_indiv_rate:
new_indiv = indiv.clone()
if genes > 0:

indices = range(len(indiv))
for _ in range(genes):

i = indices.pop(randrange(len(indices)))
new_indiv[i] = (random() < 0.5)

else:
for i in range(len(indiv)):

if random() < per_gene_rate:
new_indiv[i] = (random() < 0.5)

yield new_indiv
else:
yield indiv

APPENDIX A. STANDARD LIBRARY 187

A.5.2 Mutate Insert
Creates a stream of individuals by inserting a sequence of zero or more adjacent
random elements in each individual from the source stream. This operator requires
overloading for different representations but the interface should be the same or a
superset of that shown here.

Mutate Insert signature.

mutate_insert(per_indiv_rate=1.0, length=0, shortest=1, longest=10,
longest_result=0)

Mutate Insert parameters.

Name Default Range Description
per_indiv_rate 1.0 [0.0, 1.0] The probability of each individual being

varied. If not met, the individual is
included in the result stream unmodified.

length 0 [0∞) The exact number of adjacent elements to
insert. If zero, values are randomly
selected from between shortest and
longest inclusively.

shortest 1 [1,∞) The minimum number of elements to
insert.

longest 10 [1,∞) The maximum number of elements to
insert. If equal to or less than shortest,
the value of shortest is used for each
individual.

longest_result 0 [0,∞) The maximum length of an individual
after inserting elements. If zero, no limits
are applied.

APPENDIX A. STANDARD LIBRARY 188

Mutate Insert implementation in Python.

from random import randrange, random

Assuming binary-valued individuals
def mutate_insert(source, per_indiv_rate, length, shortest, longest,

longest_result):
if per_indiv_rate <= 0:

return source
if length > 0:

shortest = longest = length

if longest_result > 0:
for indiv in source:
if (longest_result - len(indiv) < shortest and

(per_indiv_rate >= 1.0 or random() < per_indiv_rate)):
if longest > shortest:

max_len = min(longest, longest_result - len(indiv))
new_len = randrange(shortest, max_len+1)

else:
new_len = shortest

new_genes = [(random() < 0.5) for _ in range(new_len)]
cut = randrange(len(indiv))
new_indiv = indiv.clone_with(indiv[:cut] + new_genes + indiv[cut:])
yield new_indiv

else:
yield indiv

else:
for indiv in source:
if per_indiv_rate >= 1.0 or random() < per_indiv_rate:

if longest > shortest:
new_len = randrange(shortest, longest+1)

else:
new_len = shortest

new_genes = [(random() < 0.5) for _ in range(new_len)]
cut = randrange(len(indiv))
new_indiv = indiv.clone_with(indiv[:cut] + new_genes + indiv[cut:])
yield new_indiv

else:
yield indiv

APPENDIX A. STANDARD LIBRARY 189

A.5.3 Mutate Delete
Creates a stream of individuals by removing a sequence of zero or more random
elements from each individual in the source stream.

Mutate Delete signature.

mutate_delete(per_indiv_rate=1.0, length=0, shortest=1, longest=10,
shortest_result=1)

Mutate Delete parameters.

Name Default Range Description
per_indiv_rate 1.0 [0.0, 1.0] The probability of each individual being

varied. If not met, the individual is
included in the result stream unmodified.

length 0 [0,∞) The exact number of adjacent elements
to delete. If zero, values are randomly
selected from between shortest and
longest inclusively.

shortest 1 [1,∞) The minimum number of elements to
delete.

longest 10 [1,∞) The maximum number of elements to
delete. If equal to or less than shortest,
the value of shortest is used for each
individual.

shortest_result 1 [1, ∞) The minimum length of an individual
after inserting elements.

APPENDIX A. STANDARD LIBRARY 190

Mutate Delete implementation in Python.

from random import randrange, random

def mutate_delete(source, per_indiv_rate, length, shortest, longest,
shortest_result):

if per_indiv_rate <= 0:
return source

if length > 0:
shortest = longest = length

for indiv in source:
if (len(indiv) - shortest >= shortest_result and

(per_indiv_rate >= 1.0 or random() < per_indiv_rate)):
max_cut = min(longest, len(indiv) - shortest_result)
if max_cut > shortest:

cut_len = randrange(shortest, max_cut)
cut1 = randrange(len(indiv) - cut_len)
cut2 = cut1 + cut_len

else:
cut1 = shortest_result
cut2 = len(indiv)

new_indiv = indiv.clone()
del new_indiv[cut1:cut2]
yield new_indiv

else:
yield indiv

APPENDIX A. STANDARD LIBRARY 191

A.5.4 Crossover
Creates a stream of individuals from a stream of adjacent pairs of individuals using
aligned subsequences from either.

Crossover signatures.

crossover(points=1, per_pair_rate=1.0, one_child=true, two_children=false)
crossover_one(per_pair_rate=1.0, one_child=true, two_children=false)

Crossover parameters.

Name Default Range Description
points 1 [1,∞) The number of crossover points.
per_pair_rate 1.0 [0.0, 1.0] The probability of each pair being

combined. If not met and
two_children is false, only the first
individual of the pair is included in
the result stream.

one_child True {True,False} Produces one child from every two
parents. Setting two_children to true
implies that this is false.

two_children False {True,False} Produces two children by exchanging
elements. Setting one_child to false
implies that this is true.

APPENDIX A. STANDARD LIBRARY 192

Crossover implementation in Python.

from random import random, randrange

def crossover(source, points, per_pair_rate, one_child, two_children):
if per_pair_rate <= 0 and two_children:

return source

while True:
parent = next(source)
mate = next(source)
if per_pair_rate >= 1.0 or random() < per_pair_rate:
new_indiv1 = parent.clone()
new_indiv2 = mate.clone()
max_i = min(len(parent), len(mate))
i_list = []
indices = range(max_i)
for _ in range(points):

i_list.append(indices.pop(randrange(len(indices))))

exchanging = False
for i in range(max_i):

if i in i_list:
exchanging = not exchanging

if exchanging:
new_indiv1[i], new_indiv2[i] = new_indiv2[i], new_indiv1[i]

else:
new_indiv1 = parent
new_indiv2 = mate

if one_child and not two_children:
yield new_indiv1 if random() < 0.5 else new_indiv2

else:
yield new_indiv1
yield new_indiv2

APPENDIX A. STANDARD LIBRARY 193

A.5.5 Crossover Different
Creates a stream of individuals from a stream of adjacent pairs of individuals
using unaligned subsequences from either. If the length of either child exceeds
longest_result, both are discarded and the originals returned.

Crossover Different signatures.

crossover_different(points=1, per_pair_rate=1.0, longest_result=0,
one_child=true, two_children=false)

crossover_one_different(per_pair_rate=1.0, longest_result=0,
one_child=true, two_children=false)

Crossover Different parameters.

Name Default Range Description
points 1 [1,∞) The number of crossover points.
per_pair_rate 1.0 [0.0, 1.0] The probability of each pair being

combined. If not met and one_child

is true, one individual from the pair
is returned at random.

longest_result 0 [0,∞) The maximum length of both
individuals after exchanging
elements. If zero, no limits are
applied.

one_child True {True,False} Produces one child from every two
parents. Setting two_children to true
implies that this is false.

two_children False {True,False} Produces two children by exchanging
elements. Setting one_child to false
implies that this is true.

APPENDIX A. STANDARD LIBRARY 194

Crossover Different implementation in Python.

from random import random, randrange

def crossover_different(source, points, per_pair_rate, longest_result,
one_child, two_children):

if per_pair_rate <= 0 and two_children:
return source

while True:
parent = next(source)
mate = next(source)
if per_pair_rate >= 1.0 or random() < per_pair_rate:
new_genes1 = []
new_genes2 = []
i_list1 = [len(parent)]
i_list2 = [len(mate)]
indices1 = range(len(parent))
indices2 = range(len(mate))
for _ in range(points):

i_list1.append(indices1.pop(randrange(len(indices1))))
i_list2.append(indices2.pop(randrange(len(indices2))))

i_list1.sort()
i_list2.sort()

exchanging = False
i1 = 0
i2 = 0
while len(indices1) > 0 and len(indices2) > 0:

if exchanging:
new_genes2.extend(parent[i1:indices1[0]])
new_genes1.extend(mate[i2:indices2[0]])

else:
new_genes1.extend(parent[i1:indices1[0]])
new_genes2.extend(mate[i2:indices2[0]])

exchanging = not exchanging
i1 = indices1.pop(0)
i2 = indices2.pop(0)

if (longest_result > 0 and
(len(new_indiv1) > longest_result or len(new_indiv2) > longest_result)):
new_indiv1 = parent
new_indiv2 = mate

else:
new_indiv1 = parent
new_indiv2 = mate

if one_child and not two_children:
yield new_indiv1 if random() < 0.5 else new_indiv2

else:
yield new_indiv1
yield new_indiv2

APPENDIX A. STANDARD LIBRARY 195

A.5.6 Crossover Uniform
Creates a stream of individuals from a stream of adjacent pairs of individuals using
elements from either.

Crossover Uniform signature.

crossover_uniform(per_pair_rate=1.0, per_gene_rate=0.5, genes=0,
one_child=true, two_children=false)

Crossover Uniform parameters.

Name Default Range Description
per_pair_rate 1.0 [0.0, 1.0] The probability of each pair being

combined. If not met and
two_children is false, only the first
individual of the pair is included in
the result stream.

per_gene_rate 0.5 [0.0, 1.0] The probability of each element being
exchanged.

genes 0 [0,∞) The exact number of elements in each
pair to be exchanged. If zero,
per_gene_rate is used instead.

one_child True {True,False} Produces one child from every two
parents. Setting two_children to true
implies that this is false.

two_children False {True,False} Produces two children by exchanging
elements. Setting one_child to false
implies that this is true.

APPENDIX A. STANDARD LIBRARY 196

Crossover Uniform implementation in Python.

from random import random, randrange

def crossover_uniform(source, per_pair_rate, per_gene_rate, genes,
one_child, two_children):

if ((per_pair_rate <= 0 or (per_gene_rate <= 0 and genes <= 0)) and
two_children):

return source

while True:
parent = next(source)
mate = next(source)
if per_pair_rate >= 1.0 or random() < per_pair_rate:
new_indiv1 = parent.clone()
new_indiv2 = mate.clone()
max_i = min(len(parent), len(mate))
if genes > 0:

indices = range(max_i)
for _ in range(genes):

i = indices.pop(randrange(len(indices)))
new_indiv1[i], new_indiv2[i] = new_indiv2[i], new_indiv1[i]

else:
for i in range(max_i):

if random() < per_gene_rate:
new_indiv1[i], new_indiv2[i] = new_indiv2[i], new_indiv1[i]

yield new_indiv1
if two_children:

yield new_indiv2
else:
yield parent
if two_children:

yield mate

APPENDIX A. STANDARD LIBRARY 197

A.5.7 From Tuple
Creates a stream from a source stream of joined individuals by selecting the com-
ponent individual with the specified index. Despite appearing to be a selector, this
is a variation operator because the individuals returned are a different type to the
source.

From Tuple signature.

from_tuple(index=1)

From Tuple parameters.

Name Default Range Description
index 1 [1, n] The one-based index to select individuals from. n

is the number of component individuals in the
joined individuals.

From Tuple implementation in Python.

def from_tuple(source, index):
for joined_indiv in source:

yield joined_indiv[index]

APPENDIX A. STANDARD LIBRARY 198

A.5.8 Best of Tuple
Creates a stream from a source stream of joined individuals by selecting the com-
ponent individual with the highest fitness. If more than one individual have equally
high fitnesses, the first in the tuple is returned. Despite appearing to be a selector,
this is a variation operator because the individuals returned are a different type to
the source.

Best of Tuple signature.

best_of_tuple(greediness=1.0)

Best of Tuple parameters.

Name Default Range Description
greediness 1.0 [0.0, 1.0] The probability of selecting the best

individual in the joined individual. If not met,
a random individual is selected.

Best of Tuple implementation in Python.

def best_of_tuple(source, greediness):
for joined_indiv in source:

if greediness >= 1.0 or random() < greediness:
yield max(joined_indiv, key=lambda indiv: indiv.fitness)

else:
yield joined_indiv[randrange(len(joined_indiv))]

APPENDIX A. STANDARD LIBRARY 199

A.5.9 Crossover Tuple
Creates a stream of individuals from a stream of joined individuals using elements
from any of the components.

Crossover Tuple signature.

crossover_tuple(per_indiv_rate=1.0, greediness=0.0)

Crossover Tuple parameters.

Name Default Range Description
per_indiv_rate 1.0 [0.0, 1.0] The probability of each individual being

combined. If not met, the first component
individual of the joined individual is
included in the result stream.

greediness 0.0 [0.0, 1.0] The probability of guaranteeing an
element is selected from the first
individual. If not met, every component
individual (including the first) has an
equal probability.

Crossover Tuple implementation in Python.

from random import random, randrange

def crossover_tuple(source, per_pair_rate, greediness):
if per_indiv_rate <= 0 or greediness >= 1.0:

for indiv in source:
yield source[0]

for indiv in source:
if per_pair_rate >= 1.0 or random() < per_pair_rate:
new_indiv = indiv[0].clone()
for i in range(len(new_indiv)):

if greediness <= 0.0 or random() >= greediness:
new_indiv[i] = indiv[randrange(len(indiv))][i]

yield new_indiv
else:
yield indiv[0]

APPENDIX A. STANDARD LIBRARY 200

A.6 Binary-valued Operators

A.6.1 Representation
A variable-length array of rank one containing Boolean values. This is equivalent
to a fixed-length array if no length-varying operators are used. Implementations
may choose to use a different internal representation depending on the parameters
provided to the generator.

A.6.2 Random Binary Generator
Creates an infinite stream of binary-valued individuals that are initialised from a
uniform random distribution.

Random Binary signature.

random_binary(length=0, shortest=10, longest=10, true_rate=0.5)

Random Binary parameters.

Name Default Range Description
length 0 [0,∞) The number of elements in each individual. If

zero, the range between shortest and longest is
used instead.

shortest 10 [1,∞) The minimum number of elements in each
individual.

longest 10 [1,∞) The maximum number of elements in each
individual. If equal to or less than shortest, the
value of shortest is used for every individual.

true_rate 0.5 [0.0, 1.0] The probability of each element of each
individual being true.

APPENDIX A. STANDARD LIBRARY 201

Random Binary implementation in Python.

from random import random, randrange

def random_binary(length, shortest, longest, true_rate):
if length > 0:

shortest = longest = length

while True:
if longest <= shortest:
indiv_len = shortest

else:
indiv_len = randrange(shortest, longest+1)

yield BinaryIndividual([random() < true_rate for _ in range(indiv_len)])

APPENDIX A. STANDARD LIBRARY 202

A.6.3 Binary True and False Generators
Creates an infinite stream of binary-valued individuals that are all initialised to
either true or false. These are equivalent to using random_binary with true_rate set
to 1.0 or 0.0.

Binary True and False signatures.

binary_false(length=0, shortest=10, longest=10)
binary_true(length=0, shortest=10, longest=10)

Binary True and False parameters.

Name Default Range Description
length 0 [0,∞) The number of elements in each individual. If

zero, the range between shortest and longest is
used instead.

shortest 10 [1,∞) The minimum number of elements in each
individual.

longest 10 [1,∞) The maximum number of elements in each
individual. If equal to or less than shortest, the
value of shortest is used for every individual.

Binary False implementation in Python.

from random import randrange

def binary_false(length, shortest, longest):
if length > 0:

shortest = longest = length

while True:
if longest <= shortest:
indiv_len = shortest

else:
indiv_len = randrange(shortest, longest+1)

yield BinaryIndividual([False] * indiv_len)

APPENDIX A. STANDARD LIBRARY 203

Binary True implementation in Python.

from random import randrange

def binary_true(length, shortest, longest):
if length > 0:

shortest = longest = length

while True:
if longest <= shortest:
indiv_len = shortest

else:
indiv_len = randrange(shortest, longest+1)

yield BinaryIndividual([True] * indiv_len)

APPENDIX A. STANDARD LIBRARY 204

A.6.4 Mutate Bit Flip
Creates a stream of binary-valued individuals by inverting zero or more elements in
each individual in the source stream.

Mutate Bit Flip signature.

mutate_bitflip(per_indiv_rate=1.0, per_gene_rate=0.1, genes=0)

Mutate Bit Flip parameters.

Name Default Range Description
per_indiv_rate 1.0 [0.0, 1.0] The probability of each individual being

varied. If not met, the individual is
included in the result stream unmodified.

per_gene_rate 0.1 [0.0, 1.0] The probability of each element being
modified.

genes 0 [0,∞) The exact number of elements in each
individual to be modified. If zero,
per_gene_rate is used instead.

Mutate Bit Flip implementation in Python.

from random import random, randrange

def mutate_bitflip(source, per_indiv_rate, per_gene_rate, genes):
if per_indiv_rate <= 0 or (per_gene_rate <= 0 and genes <= 0):

return source

for indiv in source:
if per_indiv_rate >= 1.0 or random() < per_indiv_rate:
if genes > 0:

new_indiv = indiv.clone()
indices = range(len(indiv))
for _ in range(genes):

i = indices.pop(randrange(len(indices)))
new_indiv[i] = not new_indiv[i]

else:
new_indiv = [not i if random() < per_gene_rate else i

for i in indiv]
yield new_indiv

else:
yield indiv

APPENDIX A. STANDARD LIBRARY 205

A.6.5 Mutate Inversion
Creates a stream of individuals from a stream of binary-valued individuals by in-
verting entire individuals.

Mutate Inversion signature.

mutate_inversion(per_indiv_rate=1.0)

Mutate Inversion parameters.

Name Default Range Description
per_indiv_rate 1.0 [0.0, 1.0] The probability of each individual being

varied. If not met, the individual is
included in the result stream unmodified.

Mutate Inversion implementation in Python.

from random import random

def mutate_inversion(source, per_indiv_rate):
if per_indiv_rate <= 0:

return source

for indiv in source:
if per_indiv_rate >= 1.0 or random() < per_indiv_rate:
new_indiv = BinaryIndividual([not i for i in indiv])
yield new_indiv

else:
yield indiv

APPENDIX A. STANDARD LIBRARY 206

A.6.6 Mutate Gap Inversion
Creates a stream of individuals from a stream of binary-valued individuals by in-
verting zero or more adjacent elements in each.

Mutate Gap Inversion signature.

mutate_gap_inversion(per_indiv_rate=1.0, length=0, shortest=1, longest=10)

Mutate Gap Inversion parameters.

Name Default Range Description
per_indiv_rate 1.0 [0.0, 1.0] The probability of each individual being

varied. If not met, the individual is
included in the result stream unmodified.

length 0 [0,∞) The exact number of adjacent elements to
insert. If zero, values are randomly
selected from between shortest and
longest inclusively.

shortest 1 [1,∞) The minimum number of elements to
invert.

longest 10 [1,∞) The maximum number of elements to
invert. If equal to or less than shortest,
the value of shortest is used for each
individual.

APPENDIX A. STANDARD LIBRARY 207

Mutate Gap Inversion implementation in Python.

from random import random, randrange

def mutate_gap_inversion(source, per_indiv_rate, length, shortest, longest):
if length > 0:

shortest = longest = length
if per_indiv_rate <= 0 or longest <= shortest <= 0:

return source

for indiv in source:
if per_indiv_rate >= 1.0 or random() < per_indiv_rate:
if longest <= shortest:

inv_len = shortest
else:

inv_len = randrange(shortest, longest+1)

new_indiv = indiv.clone()
start = randrange(0, len(indiv) - inv_len)
for i in range(start, start + inv_len):

new_indiv[i] = not new_indiv[i]
yield new_indiv

else:
yield indiv

APPENDIX A. STANDARD LIBRARY 208

A.7 Real-valued Operators

A.7.1 Representation
A variable-length array of rank one containing real values. The initial range of values
is remembered to allow their use later as constraints. Implementations may choose
to use a different internal representation depending on the parameters provided to
the generator.

A.7.2 Random Real Generator
Creates an infinite stream of real-valued individuals that are initialised from a uni-
form random distribution.

Random Real signature.

random_real(length=0, shortest=10, longest=10, lowest=0.0, highest=1.0)

Random Real parameters.

Name Default Range Description
length 0 [0,∞) The number of elements in each individual. If

zero, the range between shortest and longest is
used instead.

shortest 10 [1,∞) The minimum number of elements in each
individual.

longest 10 [1,∞) The maximum number of elements in each
individual. If equal to or less than shortest, the
value of shortest is used for every individual.

lowest 0.0 (−∞,∞) The lowest possible value of each element.
highest 1.0 (−∞,∞) The highest possible value of each element.

APPENDIX A. STANDARD LIBRARY 209

Random Real implementation in Python.

from random import randrange
from sys import maxsize

def random_real(length, shortest, longest, lowest, highest):
if length > 0:

shortest = longest = length

scale = (highest - lowest) / float(maxsize - 1)
while True:

if longest <= shortest:
indiv_len = shortest

else:
indiv_len = randrange(shortest, longest+1)

yield RealIndividual(
[randrange(maxsize) * scale + lowest for _ in range(indiv_len)],
lowest, highest)

Note that randrange is used on the last line to ensure that element values are
selected in [0.0, 1.0] rather than [0.0, 1.0).

APPENDIX A. STANDARD LIBRARY 210

A.7.3 Real Value, Low, Mid and High Generators
Creates an infinite stream of real-valued individuals that are initialised at a specific
value, the lowest value, the highest value or the midpoint of the range.

Real Value, Low, Mid and High signatures.

real_value(length=0, shortest=10, longest=10, lowest=0.0, highest=1.0, value=0.0)
real_low(length=0, shortest=10, longest=10, lowest=0.0, highest=1.0)
real_mid(length=0, shortest=10, longest=10, lowest=0.0, highest=1.0)
real_high(length=0, shortest=10, longest=10, lowest=0.0, highest=1.0)

Real Value, Low, Mid and High parameters.

Name Default Range Description
length 0 [0,∞) The number of elements in each individual. If

zero, the range between shortest and longest is
used instead.

shortest 10 [1,∞) The minimum number of elements in each
individual.

longest 10 [1,∞) The maximum number of elements in each
individual. If equal to or less than shortest, the
value of shortest is used for every individual.

lowest 0.0 (−∞,∞) The lowest possible value of each element.
highest 1.0 (−∞,∞) The highest possible value of each element.
value 0.0 (−∞,∞) The value to initialise to (real_value only).

Real Value implementation in Python.

from random import randrange

def real_value(length, shortest, longest, lowest, highest, value):
if length > 0:

shortest = longest = length

while True:
if longest <= shortest:
indiv_len = shortest

else:
indiv_len = randrange(shortest, longest+1)

yield RealIndividual([value] * indiv_len, lowest, highest)

APPENDIX A. STANDARD LIBRARY 211

Real Low, Mid and High implementations in Python.

def real_low(length, shortest, longest, lowest, highest):
return real_value(length, shortest, longest, lowest, highest, lowest)

def real_mid(length, shortest, longest, lowest, highest):
value = lowest + (highest - lowest) * 0.5
return real_value(length, shortest, longest, lowest, highest, value)

def real_high(length, shortest, longest, lowest, highest):
return real_value(length, shortest, longest, lowest, highest, highest)

APPENDIX A. STANDARD LIBRARY 212

A.7.4 Clamp
Creates a stream of individuals from a stream of real-valued individuals by chang-
ing values to be within either the specified range or the range used to create the
individuals.

Real Clamp signature.

clamp(lowest=0.0, highest=0.0)

Real Clamp parameters.

Name Default Range Description
lowest 0.0 (−∞,∞) The lowest value of each element.
highest 0.0 (−∞,∞) The highest value of each element. If less than

or equal to lowest, the initialisation range is
used.

Real Clamp implementation in Python.

def clamp(source, lowest, highest):
for indiv in source:

if highest <= lowest:
low, high = indiv.lowest, indiv.highest

else:
low, high = lowest, highest

new_indiv = indiv.clone()
changed_any = False
for i in range(len(new_indiv)):
v = new_indiv[i]
if v < low:

changed_any = True
new_indiv[i] = low

elif v > high:
changed_any = True
new_indiv[i] = high

yield new_indiv if changed_any else indiv

APPENDIX A. STANDARD LIBRARY 213

A.7.5 Mutate Delta
Creates a stream of individuals from a stream of real-valued individuals by adding
a fixed-size step value to zero or more elements.

Real Mutate Delta signature.

mutate_delta(per_indiv_rate=1.0, per_gene_rate=1.0, genes=0,
step_size=1.0, positive_rate=0.5)

Real Mutate Delta parameters.

Name Default Range Description
per_indiv_rate 1.0 [0.0, 1.0] The probability of each individual being

varied. If not met, the individual is
included in the result stream unmodified.

per_gene_rate 1.0 [0.0, 1.0] The probability of each element being
modified.

genes 0 [0,∞) The exact number of elements in each
individual to be modified. If zero,
per_gene_rate is used instead.

step_size 1.0 [0,∞) The value to add to or subtract from
selected elements.

positive_rate 0.5 [0.0, 1.0] The probability of adding step_size

rather than subtracting it.

APPENDIX A. STANDARD LIBRARY 214

Real Mutate Delta implementation in Python.

from random import random, randrange

def mutate_inversion(source, per_indiv_rate, per_gene_rate, genes,
step_size, positive_rate):

if per_indiv_rate <= 0 or (per_gene_rate <= 0 and genes <= 0):
return source

for indiv in source:
if per_indiv_rate >= 1.0 or random() < per_indiv_rate:
new_indiv = indiv.clone()
if genes > 0:

indices = range(len(indiv))
for _ in range(genes):

i = indices.pop(randrange(len(indices)))
if random() < positive_rate:
new_indiv[i] += step_size

else:
new_indiv[i] -= step_size

else:
for i in range(len(indiv)):

if random() < per_gene_rate:
if random() < positive_rate:

new_indiv[i] += step_size
else:

new_indiv[i] -= step_size
yield new_indiv

else:
yield indiv

APPENDIX A. STANDARD LIBRARY 215

A.7.6 Mutate Gaussian
Creates a stream of individuals from a stream of real-valued individuals by adding
random values selected from a Gaussian distribution to zero or more elements.

Real Mutate Gaussian signature.

mutate_gaussian(per_indiv_rate=1.0, per_gene_rate=1.0, genes=0,
step_size=1.0, sigma=1.0)

Real Mutate Gaussian parameters.

Name Default Range Description
per_indiv_rate 1.0 [0.0, 1.0] The probability of each individual being

varied. If not met, the individual is
included in the result stream unmodified.

per_gene_rate 1.0 [0.0, 1.0] The probability of each element being
modified.

genes 0 [0,∞) The exact number of elements in each
individual to be modified. If zero,
per_gene_rate is used instead.

step_size 1.0 (0.0,∞) A scale factor to apply to each step.
sigma 1.0 (0.0,∞) The standard deviation of the

distribution.

APPENDIX A. STANDARD LIBRARY 216

Real Mutate Gaussian implementation in Python.

from random import random, randrange, gauss

def mutate_gaussian(source, per_indiv_rate, per_gene_rate, genes,
step_size, sigma):

if per_indiv_rate <= 0 or (per_gene_rate <= 0 and genes <= 0):
return source

for indiv in source:
if per_indiv_rate >= 1.0 or random() < per_indiv_rate:
new_indiv = indiv.clone()
if genes > 0:

indices = range(len(indiv))
for _ in range(genes):

i = indices.pop(randrange(len(indices)))
new_indiv[i] += step_size * gauss(0, sigma)

else:
for i in range(len(indiv)):

if random() < per_gene_rate:
new_indiv[i] += step_size * gauss(0, sigma)

yield new_indiv
else:
yield indiv

APPENDIX A. STANDARD LIBRARY 217

A.7.7 Crossover Average
Creates a stream of individuals from a stream of adjacent pairs of real-valued indi-
viduals using the mean values of matching elements.

Real Crossover Average signature.

crossover_average(per_pair_rate=1.0, per_gene_rate=1.0, genes=0)

Real Crossover Average parameters.

Name Default Range Description
per_pair_rate 1.0 [0.0, 1.0] The probability of each pair of individuals

being combined. If not met, the first
individual of the pair is included in the
result stream unmodified.

per_gene_rate 1.0 [0.0, 1.0] The probability of each element being
modified. If not met, the value from the
first individual of the pair is retained.

genes 0 [0,∞) The exact number of elements in each
individual to be modified. If zero,
per_gene_rate is used instead.

APPENDIX A. STANDARD LIBRARY 218

Real Crossover Average implementation in Python.

from random import random, randrange

def crossover_average(source, per_pair_rate, per_gene_rate, genes):
if per_pair_rate <= 0 or (per_gene_rate <= 0 and genes <= 0):

return source

while True:
parent = next(source)
mate = next(source)
if per_pair_rate >= 1.0 or random() < per_pair_rate:
new_indiv = parent.clone()
max_i = min(len(parent), len(mate))
if genes > 0:

indices = range(max_i)
for _ in range(genes):

i = indices.pop(randrange(len(indices)))
new_indiv[i] = (parent[i] + mate[i]) * 0.5

else:
for i in range(max_i):

if random() < per_gene_rate:
new_indiv[i] = (parent[i] + mate[i]) * 0.5

yield new_indiv
else:
yield parent

APPENDIX A. STANDARD LIBRARY 219

A.8 Integer-valued Operators

A.8.1 Representation
A fixed-length array of rank one containing integer values. The initial range of values
is remembered to allow its use later as constraints. Implementations may choose to
use a different internal representation depending on the parameters provided to the
generator.

A.8.2 Random Integer Generator
Creates an infinite stream of integer-valued individuals that are initialised from a
uniform random distribution.

Random Integer signature.

random_integer(length=0, shortest=10, longest=10, lowest=0, highest=100)

Random Integer parameters.

Name Default Range Description
length 0 [0,∞) The number of elements in each individual. If

zero, the range between shortest and longest is
used instead.

shortest 10 [1,∞) The minimum number of elements in each
individual.

longest 10 [1,∞) The maximum number of elements in each
individual. If equal to or less than shortest, the
value of shortest is used for every individual.

lowest 0 (−∞,∞) The lowest possible value of each element.
highest 100 (−∞,∞) The highest possible value of each element.

APPENDIX A. STANDARD LIBRARY 220

Random Integer implementation in Python.

from random import randrange

def random_integer(length, shortest, longest, lowest, highest):
if length > 0:

shortest = longest = length

while True:
if longest <= shortest:
indiv_len = shortest

else:
indiv_len = randrange(shortest, longest+1)

yield IntIndividual([randrange(lowest, highest+1) for _ in range(indiv_len)],
lowest, highest)

APPENDIX A. STANDARD LIBRARY 221

A.8.3 Integer Value, Low, Mid and High Generators
Creates an infinite stream of integer-valued individuals that are initialised at a spe-
cific value, the lowest value, the highest value or the midpoint of the range.

Integer Value, Low, Mid and High signatures.

integer_value(length=0, shortest=10, longest=10, lowest=0, highest=100, value=0)
integer_low(length=0, shortest=10, longest=10, lowest=0, highest=100)
integer_mid(length=0, shortest=10, longest=10, lowest=0, highest=100)
integer_high(length=0, shortest=10, longest=10, lowest=0, highest=100)

Integer Value, Low, Mid and High parameters.

Name Default Range Description
length 0 [0,∞) The number of elements in each individual. If

zero, the range between shortest and longest is
used instead.

shortest 10 [1,∞) The minimum number of elements in each
individual.

longest 10 [1,∞) The maximum number of elements in each
individual. If equal to or less than shortest, the
value of shortest is used for every individual.

lowest 0 (−∞,∞) The lowest possible value of each element.
highest 100 (−∞,∞) The highest possible value of each element.
value 0 (−∞,∞) The value to initialise to (integer_value only).

Integer Value implementation in Python.

from random import randrange

def integer_value(length, shortest, longest, lowest, highest, value):
if length > 0:

shortest = longest = length

while True:
if longest <= shortest:
indiv_len = shortest

else:
indiv_len = randrange(shortest, longest+1)

yield IntIndividual([value] * indiv_len, lowest, highest)

APPENDIX A. STANDARD LIBRARY 222

Integer Low, Mid and High implementations in Python.

def integer_low(length, shortest, longest, lowest, highest):
return integer_value(length, shortest, longest, lowest, highest, lowest)

def integer_mid(length, shortest, longest, lowest, highest):
value = lowest + (highest - lowest) / 2
return integer_value(length, shortest, longest, lowest, highest, value)

def integer_high(length, shortest, longest, lowest, highest):
return integer_value(length, shortest, longest, lowest, highest, highest)

APPENDIX A. STANDARD LIBRARY 223

A.8.4 Clamp
Creates a stream of individuals from a stream of integer-valued individuals by chang-
ing values to be within either the specified range or the range used to create the
individuals.

Integer Clamp signature.

clamp(lowest=0, highest=0)

Integer Clamp parameters.

Name Default Range Description
lowest 0 (−∞,∞) The lowest value of each element.
highest 0 (−∞,∞) The highest value of each element. If less than

or equal to lowest, the initialisation range is
used.

Integer Clamp implementation in Python.

def clamp(source, lowest, highest):
for indiv in source:

if highest <= lowest:
low, high = indiv.lowest, indiv.highest

else:
low, high = lowest, highest

new_indiv = indiv.clone()
changed_any = False
for i in range(len(new_indiv)):
v = new_indiv[i]
if v < low:

changed_any = True
new_indiv[i] = low

elif v > high:
changed_any = True
new_indiv[i] = high

yield new_indiv if changed_any else indiv

APPENDIX A. STANDARD LIBRARY 224

A.8.5 Mutate Delta
Creates a stream of individuals from a stream of integer-valued individuals by adding
a fixed-size step value to zero or more elements.

Integer Mutate Delta signature.

mutate_delta(per_indiv_rate=1.0, per_gene_rate=1.0, genes=0,
step_size=1, positive_rate=0.5)

Integer Mutate Delta parameters.

Name Default Range Description
per_indiv_rate 1.0 [0.0, 1.0] The probability of each individual being

varied. If not met, the individual is
included in the result stream unmodified.

per_gene_rate 1.0 [0.0, 1.0] The probability of each element being
modified.

genes 0 [0,∞) The exact number of elements in each
individual to be modified. If zero,
per_gene_rate is used instead.

step_size 1 [0,∞) The value to add to or subtract from
selected elements.

positive_rate 0.5 [0.0, 1.0] The probability of adding step_size

rather than subtracting it.

APPENDIX A. STANDARD LIBRARY 225

Integer Mutate Delta implementation in Python.

from random import random, randrange

def mutate_delta(source, per_indiv_rate, per_gene_rate, genes,
step_size, positive_rate):

if per_indiv_rate <= 0 or (per_gene_rate <= 0 and genes <= 0):
return source

step_size = int(step_size)
for indiv in source:

if per_indiv_rate >= 1.0 or random() < per_indiv_rate:
new_indiv = indiv.clone()
if genes > 0:

indices = range(len(indiv))
for _ in range(genes):

i = indices.pop(randrange(len(indices)))
if random() < positive_rate:
new_indiv[i] += step_size

else:
new_indiv[i] -= step_size

else:
for i in range(len(indiv)):

if random() < per_gene_rate:
if random() < positive_rate:

new_indiv[i] += step_size
else:

new_indiv[i] -= step_size
yield new_indiv

else:
yield indiv

APPENDIX A. STANDARD LIBRARY 226

A.8.6 Mutate Gaussian
Creates a stream of individuals from a stream of integer-valued individuals by adding
random values selected from a Gaussian distribution to zero or more elements. Val-
ues are scaled and then truncated (rounded towards zero) before being added.

Integer Mutate Gaussian signature.

mutate_gaussian(per_indiv_rate=1.0, per_gene_rate=1.0, genes=0,
step_size=1.0, sigma=1.0)

Integer Mutate Gaussian parameters.

Name Default Range Description
per_indiv_rate 1.0 [0.0, 1.0] The probability of each individual being

varied. If not met, the individual is
included in the result stream unmodified.

per_gene_rate 1.0 [0.0, 1.0] The probability of each element being
modified.

genes 0 [0,∞) The exact number of elements in each
individual to be modified. If zero,
per_gene_rate is used instead.

step_size 1.0 (0.0,∞) A scale factor to apply to each step.
sigma 1.0 (0.0,∞) The standard deviation of the

distribution.

APPENDIX A. STANDARD LIBRARY 227

Integer Mutate Gaussian implementation in Python.

from random import random, randrange, gauss

def mutate_gaussian(source, per_indiv_rate, per_gene_rate, genes,
step_size, sigma):

if per_indiv_rate <= 0 or (per_gene_rate <= 0 and genes <= 0):
return source

for indiv in source:
if per_indiv_rate >= 1.0 or random() < per_indiv_rate:
new_indiv = indiv.clone()
if genes > 0:

indices = range(len(indiv))
for _ in range(genes):

i = indices.pop(randrange(len(indices)))
new_indiv[i] += int(step_size * gauss(0, sigma))

else:
for i in range(len(indiv)):

if random() < per_gene_rate:
new_indiv[i] += int(step_size * gauss(0, sigma))

yield new_indiv
else:
yield indiv

APPENDIX A. STANDARD LIBRARY 228

A.8.7 Crossover Average
Creates a stream of individuals from a stream of adjacent pairs of integer-valued
individuals using the mean values of matching elements. Mean values are truncated
(rounded towards zero).

Integer Crossover Average signature.

crossover_average(per_pair_rate=1.0, per_gene_rate=1.0, genes=0)

Integer Crossover Average parameters.

Name Default Range Description
per_pair_rate 1.0 [0.0, 1.0] The probability of each pair of individuals

being combined. If not met, the first
individual of the pair is included in the
result stream unmodified.

per_gene_rate 1.0 [0.0, 1.0] The probability of each element being
modified. If not met, the value from the
first individual of the pair is retained.

genes 0 [0,∞) The exact number of elements in each
individual to be modified. If zero,
per_gene_rate is used instead.

APPENDIX A. STANDARD LIBRARY 229

Integer Crossover Average implementation in Python.

from random import random, randrange

def crossover_average(source, per_pair_rate, per_gene_rate, genes):
if per_pair_rate <= 0 or (per_gene_rate <= 0 and genes <= 0):

return source

while True:
parent = next(source)
mate = next(source)
if per_pair_rate >= 1.0 or random() < per_pair_rate:
new_indiv = parent.clone()
max_i = min(len(parent), len(mate))
if genes > 0:

indices = range(max_i)
for _ in range(genes):

i = indices.pop(randrange(len(indices)))
new_indiv[i] = (parent[i] + mate[i]) / 2

else:
for i in range(max_i):

if random() < per_gene_rate:
new_indiv[i] = (parent[i] + mate[i]) / 2

yield new_indiv
else:
yield parent

APPENDIX A. STANDARD LIBRARY 230

231

Appendix B

ESDL Grammar

The notation used for this grammar specification is a variant of Backus-Naur Form,
simplified for human consumption rather than as input to a parser generator. Some
production rules (such as EOS) are described informally despite having a formal
construction, and some rules allow for expressions that are not described in the
specification. The specification in Chapter 4 gives the baseline requirements for an
ESDL implementation; extensions or restrictions are permitted (though restrictions
should provide more value than ease of compiler implementation) but the grammar
given here is only a guide and not a specification.

Items contained in double quotes are literal, case-insensitive text; all other names
refer to other production rules. Suffixes of ?, * and + indicate “zero or one,” “zero
or more” and “one or more” of the preceding item or parenthesised expression. The
<anything> markers represent that any text, generally up to the end of the line,
should be accepted. Whether this text is retained or discarded depends on the
context.

Operator precedence and associativity rules are omitted for simplicity; the stan-
dard mathematical order of operations is intended. Many invalid constructs are
apparently valid under the production rules; for example, ABC.123 is a binary ex-
pression consisting of name ABC, number 123 and the dot operator. While such an
operation may be valid, it is not mentioned in the specification, nor is it common to
contemporary programming languages and could reasonably be considered a syntax
error.

APPENDIX B. ESDL GRAMMAR 232

ESDL Grammar.

Name : <matches regular expression [a-z_][a-z0-9_]*>
Number : <matches regular expression [0-9]+(\.[0-9]*)?>
EOS : <a new line, except when immediately after a backslash>

System : Statement* (BlockStmt EOS)*

Statement : RepeatStmt EOS
| FromStmt EOS
| JoinStmt EOS
| YieldStmt EOS
| EvalStmt EOS
| PragmaStmt EOS
| AssignStmt EOS
| CallFunc EOS

BlockStmt : "BEGIN" Name EOS Statement* "END" <anything>
RepeatStmt : "REPEAT" Expression EOS Statement* "END" <anything>

FromStmt : "FROM" GroupOrGens "SELECT" SizedGroups ("USING" Operators)?
JoinStmt : "JOIN" Groups "INTO" Groups ("USING" Operators)?

YieldStmt : "YIELD" Groups

EvalStmt : "EVAL" Groups ("USING" Operators)?

PragmaStmt : "`" <anything> EOS

AssignStmt : Name "=" Expression

Expression : Operand (BinaryOp Operand)*
Operand : Name

| Number
| CallFunc
| "(" Expression ")"
| UnaryOp Operand
| "true" | "false"
| "null" | "none"

UnaryOp : "-"
BinaryOp : "+" | "-" | "*" | "/" | "^" | "."

Parameter : Name ("=" Expression)?

CallFunc : Name "(" Parameter ("," Parameter)* ")"
| Name "()"

Groups : Name (',' Groups)*
SizedGroups: Expression? Name (',' SizedGroups)*

GroupOrGens: Name ("," GroupOrGens)*
| CallFunc ("," GroupOrGens)*

Operators : Name ("," Operators)*
| CallFunc ("," Operators)*

233

Appendix C

esdlc Architecture

C.1 Overview
esdlc is a compiler for ESDL systems that produces code for multiple targets. It
is written in Python and consists of three main components: the lexer, the parser
and a collection of code generators. Figure C.1 shows the general flow used by esdlc

when compiling an ESDL description. The source ESDL is provided as a file or a
string to the lexer (Section C.2), which produces a stream of tokens. These tokens
are passed to the parser (Section C.3), which develops a syntax tree and then a
model based on the one described in Section 5.2 (page 99). This model is used by
one or more code generators, called emitters (Section C.4), to produce compilable
code or an executable program.

The full source code for esdlc is available online at http://esdlc.googlecode.

com/ and includes two emitters, one for esec (Section C.4.2) and a prototype for
generating C++ AMP code (Appendix D).

ESDL Source

Lexer Parser

Output Code

Token

Stream
AST

Model

Code Generator

Emitter

Figure C.1: The compilation flow of esdlc.

http://esdlc.googlecode.com/
http://esdlc.googlecode.com/

APPENDIX C. ESDLC ARCHITECTURE 234

Table C.1: Regular Expressions used to identify ESDL tokens.
Token Type Regex
comment (#|;|//).*$
operator \+ | - | * | \/ | \% | \^ | \.
assign \=
comma \,
name (?!\d)\w+
number (\d+\.\d*|\d+|\.\d+)(e[-+]?\d+)?
open \(| \[| \{
close \) | \] | \}
pragma ˋ.*$
skip_eos \\\s*(($|;|//).*)?$

C.2 Lexer
The lexer in esdlc is based on an ordered list of regular expression match strings.
Each of the regexes in Table C.1 is used to try and find a token at the current
location. If a match is found, the matching text is appended to the token stream
with its type and the current location is advanced. Tokens of type name have their
text lowercased. If no regex matches, the position is advanced by one and the
character is appended to an error token, which is appended to the token stream at
the next successful match.

At the end of each line a special eos token is added, unless the preceding token
is skip_eos in which case it is removed and no eos token is added. Each line is read
separately from a file or a source string and location information (line and column
number) is added to each token to allow informative error messages at later stages.
The lexer never produces an error; instead, it creates error tokens that result in
errors later.

Extending the lexer is generally not necessary, except where a language extension
is being created. Where a new type of token is required, inserting a new regex into
the list of tokens is all that is required. Tokens of that type will then appear in the
stream handled by the parser.

C.3 Parser
The model produced by the parser is an instance of the esdlc.model.System class,
typically one of the subclasses FluentSystem or AstSystem. FluentSystem is an ob-
ject construction builder [35] that allows a system to be described using Python
code, while AstSystem takes a token stream from the lexer. AstSystem is the more
commonly used class, though FluentSystem is convenient for testing code generation
independently from lexing and parsing source.

APPENDIX C. ESDLC ARCHITECTURE 235

C.3.1 System class
System is the base class representing an ESDL system. It contains a dictionary blocks

that maps block names to lists of statements. The block_names attribute contains
the names of all blocks in the order they were originally specified. variables and
externals contain mappings from names to objects representing variables; functions
and operators, as in Python, are treated as variables that may be called.

C.3.2 FluentSystem class
The FluentSystem class is used to define a system with an ESDL-like syntax based
on chaining function calls. Listing C.1 shows an example system that has the equiv-
alent ESDL statements included as comments. Providing a definitions function
is required to specify blocks, variables and groups, since FluentSystem does not au-
tomatically infer them from use. Other blocks are provided as functions called
block_<name>, and specified with the Block() function.

Listing C.1: Defining a FluentSystem in Python.

class GAwithTournament(FluentSystem):
def definitions(self):

self.External("random_binary")
self.External("onemax_evaluator")
self.External("tournament")
self.External("mutate_random")
self.External("best")

self.Group("population")
self.Group("parents")
self.Group("offspring")

self.Variable("size")

self.Block("generation")

def block_init(self):
size = 100
self.Assign("size", 100.0)

FROM random_binary(length=10) SELECT size group
self.From(self.Generator("random_binary", length=10.0)) \

.Select(self.Group("population", "size"))

EVAL population USING onemax_evaluator
self.Eval("population", "onemax_evaluator")
YIELD population
self.Yield("population")

def block_generation(self):
FROM population SELECT size parents USING tournament(k=2)
self.From("population") \

.Select(self.Group("parents", limit="size")) \

.Using(self.Function("tournament", k=2.0))
FROM parents SELECT offspring USING mutate_random(per_gene_rate=0.1)

APPENDIX C. ESDLC ARCHITECTURE 236

self.From("parents") \
.Select("offspring") \
.Using(self.Function("mutate_random", per_gene_rate=0.1))

FROM population, offspring SELECT size population USING best
self.From("population", "offspring") \

.Select(self.Group("population", limit="size")) \

.Using("best")

YIELD population
self.Yield("population")

The primary use of FluentSystem is to simplify testing of System; it is not intended
to be the usual way to define systems. Most of the provided functions—From, Join,
Yield, Eval, Variable, Group and Function—are trivial and simply construct an object
with the parameters and append it to the relevant list. FluentSystem does not use
the lexer, though it may be used with emitters in the same way as AstSystem.

C.3.3 AstSystem class
Creating a System instance from ESDL source involves two classes: AST and Ast-

System. AST uses a token stream from the lexer to construct the syntax tree that
AstSystem parses to instantiate the model. Separating the two steps allows users of
esdlc to intercept the syntax tree and make modifications before converting it to a
model; syntax trees can usually be converted back to the original source, while a
System may have lost enough information to make this impossible.

AST is instantiated with a TokenReader object to simplify iteration and look-ahead
on the list of tokens. The central function is AST.parse_statement(), which follows
the structure shown in Figure C.2 based on the grammar given in Appendix B. The
parse functions called from parse_statement() use shared functions for the Groups,
SizedGroups, GroupsOrGens and Operators elements from the grammar, all of which
perform basic validation according to the permissible child nodes. For example,
the parse_groups() method will produce errors if group sizes or function calls are
specified. The parse_groups_or_generators() and parse_operators() functions handle
identical syntax, but the latter produces CallFunc nodes for all elements rather than
only those with a parameter list.

Expressions are parsed using two functions: parse_expression() and parse_-

operand(), in keeping with the grammar. parse_operand() handles operator-less
expressions and converts parenthesised expressions by calling parse_expression().
Since parse_expression() uses parse_operand(), there is mutual recursion into sub-
expressions. However, the implementation of parse_expression() does not recurse
for operators, as a typical recursive-descent parser would. Instead, operator and
operand nodes are stored in a list and each binary operator is reduced in successive
passes. This allows operator precedence to be clearly specified and reduce recursion,

APPENDIX C. ESDLC ARCHITECTURE 237

If token tag is… …and token text is… …use function…

name

pragma

comment

*

“from”

“join”

“yield”

“eval”/”evaluate”

“begin”

“repeat”

followed by “=“

parse_from_stmt()

parse_join_stmt()

parse_yield_stmt()

parse_eval_stmt()

parse_begin_stmt()

parse_repeat_stmt()

parse_assign_stmt()

* parse_expression()

…and return a…

FromStmt node

JoinStmt node

YieldStmt node

EvalStmt node

BeginStmt node

RepeatStmt node

AssignStmt node

CallFunc node

Operator node

PragmaStmt node

Comment node

Error

“end” EndStmt node

Figure C.2: Top-level esdlc parser structure.

though since most expressions in ESDL are unlikely to be highly complex, this is
not a significant optimisation.

An example of the resulting syntax tree was shown in Listing 5.9 (page 113) and
is reproduced here as Listing C.2.

AstSystem uses the syntax tree to fill the inherited members of System: blocks,
block_names, variables and _errors (accessible through Validator’s errors and warn-

ings properties). In effect, a similar parsing process is used to that in AST, though
in this case the output is an executable model—each element includes an execute()

function that provides the functionality. Directly executing the model is very in-
efficient compared to generating compilable code, but it is suitable for testing and
validation purposes.

C.3.4 Validator class
The Validator class is used to produce error messages and warnings for invalid or
potentially invalid constructs. When using AstSystem, many warnings are impossible
to generate without causing an error at an earlier stage; however, since other System

subclasses may not have similar safeguards, the checks are retained. Examples of
issues that are detected include unused and uninitialised variables, naming collisions
between groups, variables and blocks, missing operands in expressions, incorrect or
unspecified group sizes and restricted or invalid variable names.

APPENDIX C. ESDLC ARCHITECTURE 238

BeginStmt{ initialisation, [
PragmaStmt{`include "Evaluator.h"},
={ lowest, -{ 100 } }
={ highest, 100 }
FromStmt{ [random_real[={ length, 8 }, lowest, highest]],

SelectStmt{ [population{ n }] }
},
EvalStmt{ [population],

UsingStmt{ [evaluator] }
},
YieldStmt{ [population] }

]}

BeginStmt{ generation_equivalent, [
RepeatStmt{ n, [

FromStmt{ [population],
SelectStmt{ [parents{ 2 }, rest] },
UsingStmt{ [fitness_proportional[no_replacement]] }

},
FromStmt{ [parents],
SelectStmt{ [offspring] },
UsingStmt{ [crossover, mutate[={ per_gene_rate, 0.1 }]] }

},
FromStmt{ [offspring, rest],
SelectStmt{ [population] }

},
]},
YieldStmt{ [population] }

]}

Listing C.2: Example syntax tree generated by the AST class.

APPENDIX C. ESDLC ARCHITECTURE 239

def emit(model, out=sys.stdout, optimise_level=0, profile=False):
Generate output and write to out

return code_string, context_dict

Listing C.3: emit function signature.

Validator is structured similarly to an emitter (Section C.4) in its traversal of the
model, though instead of producing code it extends the list of errors associated with
the System. These error objects are exposed through Validator.errors and Valid-

ator.warnings, which filter based on severity. In general, a system with errors should
not be passed to the emitter, while one with warnings may.

C.4 Code Generation

C.4.1 Emitters
Emitters provide code generation by converting an instance of System into another
form. This form is not necessarily executable code, but may be an image, diagram or
other format that takes advantage of the semantic analysis. Basic syntax colouring,
for example, does not require compilation of the source ESDL, and would only
require an emitter if different colours were to be used for groups, variables and
operators.

Emitters are implemented as Python functions with the signature shown in List-
ing C.3. The out parameter is used to write the output, which may also be returned
as a string in code_string if appropriate. Where the output is not a string—an image,
for example—it should be written to out and None returned in place of code_string.
For the optimise_level and profile parameters, the actual implementation will vary
depending on the target. optimise_level is intended to be zero for no optimisations
with the level of optimisation increasing with larger values. profile is set to True

to include hooks to allow the generated code to have its execution time measured,
rather than profiling the performance of the emitter itself.

context_dict is an optional Python dictionary that includes extra definitions that
may be required for actually using the code. If a __compile() function is returned in
context_dict it is called with the original output path. For example, the esec emitter
adds functions for merging, joining and partitioning groups, which esec includes in
the execution context, while the C++ AMP emitter provides a __compile() function
that invokes a C++ compiler if one is available.

New emitters may be added by creating a new module in the esdlc.emitters

package; emitters are loaded at run-time based on the command line arguments to

APPENDIX C. ESDLC ARCHITECTURE 240

Original ESDL:
BEGIN generation
REPEAT 100
FROM a SELECT b USING c
END
YIELD b
END

Generated code:
def _block_generation():
for _ in xrange(100):

b = _group(c(_source=_merge(a)))
_yield("b", b)

Listing C.4: Python code generated for named and repeated blocks.

the esdlc.py script. The emitter for esec is discussed in the following section, while
the C++ AMP emitter is described in Appendix D.

C.4.2 esec emitter
esdlc is embedded directly in esec and invoked automatically. Code generation for
esec may also be achieved by passing /e:esec on the command line to esdlc.py.

The esdlc.emitters.esec.emit() function uses a private class _emitter to simplify
handling state and output while generating the code. _emitter contains helper meth-
ods for appending code to the current output line with correct indentation. Each
element type has a separate function on _emitter for generating the executable code.

_emit_block() is the main emitter function. It is called once for each named
block to generate a function containing all the statements to execute in that block.
Functions are named using the block name (or _init for the initialisation block)
prefixed with _block_; for example, a GENERATION block would have a function _block_-

generation(). Within the block, each statement is passed to _emit(), which then
invokes a more specific function. REPEAT blocks are written by _emit_repeat(), which
creates a for-loop for the number of iterations specified. As with named blocks, each
statement is passed to _emit(). Listing C.4 shows the code that is generated for
named and repeat blocks.

Store operations are the most involved element, typically resulting in three or
more lines of generated Python code. When optimise_level is zero, _emit_store() is
called from _emit(); otherwise, the _emit_store_optimised() function is used, which
generates less code though it is unlikely to be significantly faster. In both cases, the
operator chain is created by invoking (calling or constructing, depending upon the
type) each operator in turn, passing the previous as the _source parameter. The first
operator is either _merge (for FROM-SELECT) or _join (for JOIN-INTO), both of which

APPENDIX C. ESDLC ARCHITECTURE 241

Original ESDL:
FROM a, b SELECT 100 c USING crossover, mutation
Model elements:
Store([a, b], [(100, c)], [_merge, crossover, mutation])

Unoptimised code:
_gen = _merge(a, b)
_gen = crossover(_source=_gen)
_gen = mutation(_source=_gen)
c = _group(_part(_gen, 100))

Optimised code:
c = _group(_part(mutation(_source=crossover(_source=_merge(a, b))), 100))

Listing C.5: Python code generated for unoptimised and optimised stores.

take the source groups as a parameter list. At the end of the chain, calls to _group()

and, if required, _part(), produce the group instances that are assigned to group
variables. Listing C.5 shows examples of the code generated for unoptimised and
optimised versions of the same FROM-SELECT statement. JOIN-INTO statements differ
only by using _join in place of _merge.

Function calls are handled by the _emit_function() function, which delegates
based on the function type. Assignments, indicated by a call to the pseudo-function
_assign, are passed to the _emit_assign() function. Since Python has dynamic typ-
ing that matches the ESDL model, code generation is straightforward—apart from
renaming accidental collisions with Python keywords, the assignment is written as
in ESDL.

Attribute accesses (“a.b”) and indexers (“a[i]”) are parsed as _getattrib and
_getindex pseudo-functions; the _emit_getattribute() and _emit_getindex() func-
tions produce the equivalent Python code directly. External function calls are writ-
ten almost identically to the ESDL definitions: Python supports named parameters
and default values that make most function calls interchangeable with ESDL. The
exceptions are parameter names that conflict with Python keywords but not ESDL
keywords, such as lambda or class. Errors are avoided by appending underscores to
these parameters—lambda_ and class_—which is the Python convention for using
keywords as names. Variables and groups are similarly protected.

Yields are implemented by invoking a _yield() function, which is typically pro-
vided by the esec framework. Both the group and a string with the group’s name
are passed to this function. The default implementation performs all analysis im-
mediately before returning.

EVAL statements create an instance of the specified evaluator and assign it to
each individual. Any cached fitness value is invalidated and no evaluation takes

APPENDIX C. ESDLC ARCHITECTURE 242

Original ESDL:
FROM a SELECT b USING unique
`py if len(b) > 100:
`py print("Over 100 unique individuals")

Generated code:
b = _group(unique(_source=_merge(a)))
if len(b) > 100:
print("Over 100 unique individuals")

Listing C.6: Example of expanding a ˋpy pragma into Python code.

place until it is next accessed. When no evaluator is specified, the individual’s
_eval member is set to None—on its next evaluation it is reset to the individual’s
_eval_default member, which contains the default evaluator for that species.1

Only one pragma is recognised by this emitter: lines beginning with ˋpy are
assumed to be literal Python code to include in the generated code. The command
is removed and the remaining text is then written at the current indent level. One
space exists between the command and the Python code, which is removed, but
other whitespace is left untouched to allow blocks to be specified. Listing C.6 shows
an example of a ˋpy pragma that prints a message when a group contains more than
a certain number of unique individuals.

The esec emitter includes support for profiling hooks. If the profiling parameter
to emit() is True, an object _profiler with start and stop methods is assumed. Calls
to this object are emitted around each ESDL statement with the full statement text,
as shown in Listing C.7. The profiler object needs to be provided by the user—an
example class (esdlc.emitters.esec.Profiler) exists, but is not used by default and
does not record event timings.

Listing C.8 shows an example ESDL system that contains most of the available
constructs. Listings C.9 and C.10 show the code generated by the esec emitter
without and with optimisation, respectively.

1“Species” do not exist in ESDL; however, esec continues to include them. They have no impact
on the code that is generated.

APPENDIX C. ESDLC ARCHITECTURE 243

Original ESDL:
FROM a, b SELECT 100 c USING crossover, mutation

Example profiler implementation
class Profiler:
def __init__(self):

self.data = []

def start(self, statement):
self.data.append(None)
self.data[-1] = (statement, 'Start')

def end(self, statement):
self.data.append((statement, 'End'))

_profiler = Profiler()

Generated code:
_profiler.start("FROM a, b SELECT 100 c USING crossover, mutation")
_gen = _merge(a, b)
_gen = crossover(_source=_gen)
_gen = mutation(_source=_gen)
c = _group(_part(_gen, 100))
_profiler.stop("FROM a, b SELECT 100 c USING crossover, mutation")

Listing C.7: Python code generated with profiling enabled.

APPENDIX C. ESDLC ARCHITECTURE 244

FROM random_binary(length=config.length.max) SELECT 100 population
t = 0
delta_t = -0.1
lambda = 100
EVAL population USING evaluators.population(t)
YIELD population

BEGIN generation
t = t + (delta_t * 1.4)
`py print(t)
`cpp printf("%f\n", t);

REPEAT 10
FROM population SELECT 100 parents USING tournament(k=2, greediness=0.7)

FROM parents SELECT mutated USING mutate_delta(stepsize)
FROM parents SELECT crossed USING uniform_crossover
EVAL mutated, crossed USING evaluator(t=t, lambda)

JOIN mutated, crossed INTO merged USING tuples
FROM merged SELECT offspring USING best_of_tuple

FROM population, offspring SELECT 99 population, rest USING best
FROM rest SELECT 1 extras USING uniform_random
FROM population, rest, extras SELECT (((100))) population

END REPEAT

EVAL population USING evaluators.config(t)
YIELD population

END generation

Listing C.8: Example ESDL system that includes most compilable constructs.

APPENDIX C. ESDLC ARCHITECTURE 245

Listing C.9: Unoptimised Python code generated by esdlc for Listing C.8.

_global = globals()
def _block__init():

FROM random_binary(length=config.length.max) SELECT (100) population
_gen = _merge(random_binary(length=config.length.max))
_global["population"] = _group(_part(_gen, 100))

t = 0.0
_global["t"] = 0.0

delta_t = (-0.1)
_global["delta_t"] = (-0.1)

lambda = 100.0
_global["lambda"] = 100.0

EVAL population USING evaluators.population(t)
_eval = _evaluator(evaluators.population(t=t))
for _indiv in _merge(population):

_indiv._eval = _eval
del _indiv.fitness

YIELD population
_yield("population", population)

def _block_generation():
t = (t+(delta_t*1.4))
_global["t"] = (t+(delta_t*1.4))

`py print(t)
print(t)

`cpp printf("%f\n", t);

REPEAT 10.0
for _ in _range(10.0):

FROM population SELECT (100) parents USING tournament(k=2.0, greediness=0.7)
_gen = _merge(population)
_gen = tournament(k=2.0, greediness=0.7, _source=_gen)
_global["parents"] = _group(_part(_gen, 100))

FROM parents SELECT mutated USING mutate_delta(stepsize)
_gen = _merge(parents)
_gen = mutate_delta(stepsize=True, _source=_gen)
_global["mutated"] = _group(_gen)

FROM parents SELECT crossed USING uniform_crossover()
_gen = _merge(parents)
_gen = uniform_crossover(_source=_gen)
_global["crossed"] = _group(_gen)

EVAL mutated, crossed USING evaluator(t=t, lambda)
_eval = _evaluator(evaluator(t=t, lambda_=_global["lambda"]))
for _indiv in _merge(mutated, crossed):

_indiv._eval = _eval
del _indiv.fitness

APPENDIX C. ESDLC ARCHITECTURE 246

JOIN mutated, crossed INTO merged USING tuples()
_gen = _join(mutated, crossed)
_gen = tuples(_source=_gen)
_global["merged"] = _group(_gen)

FROM merged SELECT offspring USING best_of_tuple()
_gen = _merge(merged)
_gen = best_of_tuple(_source=_gen)
_global["offspring"] = _group(_gen)

FROM population, offspring SELECT (99) population, rest USING best()
_gen = _merge(population, offspring)
_gen = best(_source=_gen)
_global["population"] = _group(_part(_gen, 99))
_global["rest"] = _group(_gen)

FROM rest SELECT (1) extras USING uniform_random()
_gen = _merge(rest)
_gen = uniform_random(_source=_gen)
_global["extras"] = _group(_part(_gen, 1))

FROM population, rest, extras SELECT (100) population
_gen = _merge(population, rest, extras)
_global["population"] = _group(_part(_gen, 100))

EVAL population USING evaluators.config(t)
_eval = _evaluator(evaluators.config(t=t))
for _indiv in _merge(population):

_indiv._eval = _eval
del _indiv.fitness

YIELD population
_yield("population", population)

_block__init()

APPENDIX C. ESDLC ARCHITECTURE 247

Listing C.10: Optimised Python code generated by esdlc for Listing C.8.

_global = globals()
def _block__init():

_global["population"] = _group(_part(_merge(random_binary(length=config.length.max)), »
«100.0))
_global["t"] = 0.0
_global["delta_t"] = (-0.1)
_global["lambda"] = 100.0
_eval = _evaluator(evaluators.population(t=t))
for _indiv in _merge(population):

_indiv._eval = _eval
del _indiv.fitness

_yield("population", population)

def _block_generation():
_global["t"] = (t+(delta_t*1.4))
print(t)
for _ in _range(10.0):

_global["parents"] = _group(_part(tournament(k=2.0, greediness=0.7, _source=_merge(p»
«opulation)), 100.0))

_global["mutated"] = _group(mutate_delta(stepsize=True, _source=_merge(parents)))
_global["crossed"] = _group(uniform_crossover(_source=_merge(parents)))
_eval = _evaluator(evaluator(t=t, lambda_=_global["lambda"]))
for _indiv in _merge(mutated, crossed):

_indiv._eval = _eval
del _indiv.fitness

_global["merged"] = _group(tuples(_source=_join(mutated, crossed)))
_global["offspring"] = _group(best_of_tuple(_source=_merge(merged)))
_gen = best(_source=_merge(population, offspring))
_global["population"] = _group(_part(_gen, 99.0))
_global["rest"] = _group(_gen)
_global["extras"] = _group(_part(uniform_random(_source=_merge(rest)), 1.0))
_global["population"] = _group(_part(_merge(population, rest, extras), 100.0))

_eval = _evaluator(evaluators.config(t=t))
for _indiv in _merge(population):

_indiv._eval = _eval
del _indiv.fitness

_yield("population", population)

_block__init()

C.5 Summary
esdlc is an extensible compiler for ESDL that produces a model usable for gener-
ating code for a variety of targets. The current implementation generates Python
code for use with esec, and also supports generating C++ AMP code, as discussed in
Appendix D. A lexer and parser convert ESDL code to a model that is validated and
used for platform-specific code generation. esdlc can be partially or completely em-
bedded in any program supporting Python evaluation, allowing ESDL compilation
to be provided to users directly.

The full source code for esdlc is available online at http://esdlc.googlecode.

com/.

http://esdlc.googlecode.com/
http://esdlc.googlecode.com/

APPENDIX C. ESDLC ARCHITECTURE 248

249

Appendix D

Parallel Execution

D.1 Background
Beyond the need for rapid development, proving the capabilities of many algorithms
requires significant computing power in order to complete a large number of experi-
ments within a reasonable timeframe. For many years, Moore’s Law1 allowed CPUs
to increase their operating speed on a regular basis, reducing the need for program-
mers to focus on optimisation. However, the effect of increasing transistor count
on processor speed stalled, resulting in speeds levelling out during the mid-2000s.
To continue the increases in processing speed, CPU developers increased throughput
by including multiple processors on single chips—dual-core, quad-core and more—as
well as combining different types of processors and connecting physically separate
hardware. However, in order to utilise the full processing power of multicore, hetero-
geneous and distributed (“cloud”) processing, new programming styles have become
necessary. [90, 91]

Multithreading and parallel processing are not new concepts, having been inves-
tigated for decades and used on the earliest supercomputers, but with the general
availability of truly parallel machines the need for these techniques is now main-
stream. The two general approaches are broadly recognised as task-parallel and
data-parallel. Tasks are independent sections of code that occasionally synchronise
but generally have separate responsibilities. An algorithm can be converted to a
task-parallel form by identifying subsequences of steps that have few dependencies
on each other.

Data-parallel algorithms, by contrast, run exactly the same sequence of steps
on separate portions of a large data set. In SIMD (Single-Instruction Multiple-
Data) machines, these steps are locked, such that a group of processors perform the
same instruction simultaneously using separate data; MIMD (Multiple-Instruction

1The prediction, made by Intel co-founder Gordon Moore, that the number of transistors that
can be placed on an integrated circuit doubles every two years.

APPENDIX D. PARALLEL EXECUTION 250

Multiple-Data) machines are not locked. SIMD machines have advantages in price,
size and power consumption over MIMD, since the electronics required for instruc-
tion fetch and decode are shared, but generally cannot be used for task-parallelism.
The cost to the developer is that data-parallel algorithms are significantly different
from single-threaded algorithms and usually require redesign and reimplementa-
tion. Further, in order to observe any speed improvement over a single-threaded
algorithm, the amount of data usually needs to be large (N > 105) [44].

Modern GPU cards are massively parallel SIMD machines, typically allowing
hundreds of threads to be run in parallel. By comparison, current high-end desk-
top CPUs are capable of a degree of parallelism up to thirty-two through mixed
MIMD and SIMD components. The difference between the two is the complexity of
operations that may be performed on each element: CPUs handle extended, non-
linear sequences of complicated instructions on linear sequences of data well; GPUs
are best for simple, typically arithmetic and rarely branching operations with large
arrays of data. While both GPUs and CPUs are theoretically capable of perform-
ing any task, selecting the right processor to use is necessary to achieve optimal
performance.

EAs have a significant history of implementation on parallel hardware, typi-
cally using one of a few approaches. The earliest was the use of island popula-
tions—“demes”—which are separate instances of the algorithm that exchange in-
dividuals or use breeding neighbourhoods [13]. Since the entire algorithm is repli-
cated, the ideal hardware configuration is one CPU for each instance. However, the
maximum speedup obtainable from island populations is limited, and the nature of
the algorithm changes such that any previous analysis of its behaviour or suitable
problems may become irrelevant.

For algorithms with expensive evaluation routines, copying the entire popula-
tion to separate parallel hardware just for evaluation may provide an overall perfor-
mance improvement. This approach is sometimes known as “master-slave” paralleli-
sation [13]. Parallel evaluation is an attractive prospect, since fitnesses are normally
calculated independently for each individual. However, the cost of transferring a
population between sequential and parallel processors, which rarely use a unified
address space, may outweigh the benefits [45, 62].

Parallelising the parts of an EA that are independent, or nearly independent,
for each individual is another option. In typical algorithms, mutation is indepen-
dent and recombination involves only two individuals; parallelising these as well as
evaluation moves more work to the parallel hardware, reducing the proportion of
transfer overheads [13]. This is still considered master-slave parallelisation, though
since recombination and mutation are normally very simple operations, there is little
benefit in moving them to specialised hardware.

APPENDIX D. PARALLEL EXECUTION 251

MIMD SIMD MIMD SIMD MIMD SIMD

(a) (b) (c)

Initialise

Select

Vary

Evaluate

Analyse

Initialise

Select

Vary

Evaluate

Analyse

Initialise

Select

Vary

Evaluate

Analyse

Figure D.1: Potential arrangements for an EA on heterogeneous hardware.

The final approach is to execute all aspects of the algorithm on parallel hardware,
thereby removing all overheads relating to sharing data. However, algorithms that
require random access to data are difficult to parallelise, the most important here
being sort algorithms. The time taken to sort a population by fitness on a GPU
compared to a CPU can easily eliminate the benefits of having avoided copying; as
a mitigation, many implementations use tournament style selection that does not
require full sorting [22, 74].

Figure D.1 shows three general approaches to parallelising EAs (excluding is-
land populations) with MIMD and SIMD processors under a non-unified memory
architecture (for example, a CPU and a GPU). (a) runs evaluations in parallel,
copying the entire population to and from the SIMD processor as required. (b) per-
forms initialisation, variation and evaluation, all inherently parallel operations, on
the SIMD processor and uses the MIMD processor for sort operations. Finally, (c)
runs the entire algorithm on the MIMD processor, avoiding the overhead of copying
completely.

The difference in performance between (b) and (c) depends largely on the effi-
ciency of the sort algorithm used. With a performant way to order the individuals in
a group, selection and analysis can show equivalent or better performance compared
to copying between devices. Sort algorithms for sequential architectures, particularly
those supporting recursion, are mature and very efficient, while those for parallel
architectures are not as well established. For this implementation, the arrangement
of Figure D.1c is used with the sort algorithm described in [27].

D.2 C++ AMP
C++ AMP (C++ Accelerated Massive Parallelism) is a library and a language ex-
tension to C++ that supports algorithm development on heterogeneous platforms
such as GPUs. The library provides a common interface for allocating and trans-

APPENDIX D. PARALLEL EXECUTION 252

#include <amp.h>
using namespace concurrency;

void add_arrays(int N, float* A, float* B, float* C) {
array_view<float, 1> vA(N, A), vB(N, B), vC(N, C);

parallel_for_each(vC.extent, [=](index<1> i) restrict(amp) {
vC[i] = vA[i] + vB[i];

});
}

Listing D.1: Array addition in C++ AMP.

ferring memory between platforms, iterating over multi-dimensional collections of
data, and distributing execution across heterogeneous hardware. A single language
extension—the restrict modifier—allows code for other platforms to intermingle
with CPU code, rather than requiring separate files and syntax. [15, 44]

C++ is used to write the code to execute in parallel, though due to the limited
instruction sets on SIMD processors only a subset of the language is available. No-
table limitations are the lack of virtual methods and hence useful polymorphism,
variable references and interaction between code on different platforms. All func-
tions used in a kernel must be marked with suitable restrict qualifiers and be able
to be compiled inline. Polymorphic class hierarchies are not possible, but templates
and generic programming can be used to provide compile-time type dispatch. Sim-
ple user-defined types can be used as array elements and accessed within kernels
using normal C++ syntax, including constructors and overloaded operators.

C++ AMP does not automatically provide superior performance to alternative in-
terfaces such as CUDA or OpenCL; the value proposition is developer productivity.2

C++ AMP allows the developer to design for their data, rather than the hardware;
iteration is the central concept, whereas CUDA and OpenCL place threads cen-
trally. This abstraction allows a C++ developer to implement an algorithm using
C++ AMP quickly and address optimisations for thread and memory layout later if
necessary. In contrast, a CUDA or OpenCL developer must deal with these com-
plexities up-front in order to create an executable algorithm.

Listing D.1 shows a trivial example of adding two arrays using C++ AMP. The
use of lambda functions3 is a convenience but not mandatory. Apart from the
restrict(amp) modifier, there are no modifications to the C++ language; array_view,
index and parallel_for_each are defined in the amp.h header file.

2By analogy, C++ does not provide better performance than assembly language, though the
productivity benefits are so widely accepted as to be unworthy of comment.

3Lambda functions were introduced into C++ with the new standard in 2011 and are already
supported by the major compilers.

APPENDIX D. PARALLEL EXECUTION 253

Source.esdl

Operator

Library

External

Operators.h

C++

Compiler

esdlc

Source.cpp

Source.exe

Figure D.2: Compilation workflow of the cppamp emitter.

C++ AMP has one implementation based on DirectCompute, which limits its
use to computers running Microsoft Windows with recent hardware, though other
compiler developers are working on implementations for their own platforms. The
implementation is freely available as part of Microsoft Visual Studio 11 Beta.4

D.3 Execution Model
esdlc is a compiler for ESDL written in Python but supporting code generation
for multiple targets. One supported target is C++ AMP: esdlc can produce an
executable that runs the algorithm entirely using a DirectCompute-capable GPU.
When invoking esdlc directly, the /e:cppamp command-line option uses the cppamp

emitter that generates C++ AMP output.
A .esdl source file is used to provide the system definition, while external op-

erators may be included using ˋinclude pragmas. esdlc creates a .cpp file with
references to the EA library implemented for C++ AMP, which is based on that
described in Appendix A. This .cpp file is compiled with a supporting compiler to
produce the final executable. Section D.3.4 describes the command-line options for
this program. Figure D.2 shows the compilation process graphically.

The ESDL algorithms that may be compiled to C++ AMP are restricted in order
to achieve high execution performance. Features such as heterogeneous groups and
non-linear individual representations cannot be implemented for parallel platforms
without severely affecting performance. Some parameters need to be provided as
compile-time constants. For example, the number of elements in an individual is an
aspect of the group type (a template parameter) and so cannot be modified after the

4Details and downloads are available at http://go.microsoft.com/fwlink/?LinkId=190957

http://go.microsoft.com/fwlink/?LinkId=190957

APPENDIX D. PARALLEL EXECUTION 254

auto x = 1;
// identical to: int x = 1;

auto name = L"ESDL";
// identical to: const wchar_t name[5] = {'E', 'S', 'D', 'L', 0};

auto z = 1.0f * x;
// identical to: float z = 1.0f * x;

Listing D.2: Examples of the C++ auto type declaration.

C++ compilation step. Neither of these restrictions is defined as part of ESDL—they
are features provided by esec but not the C++ AMP code generator. Variable-length
groups, immutable individuals and reassignable evaluators are supported.

Individual representations are limited to arrays of 32-bit integers or floating-
point values.5 While other representations are possible, C++ AMP is optimised for
arrays of these primitive types; representations that are more complex are unlikely
to see any performance improvement over a single-threaded CPU implementation.

D.3.1 Memory Model
The blackboard in generated C++ AMP code is the scope of the main function:
groups and variables are stored against either the names used in the original ESDL
or ‘mangled’ versions of the names. C++ is statically typed, and so values must be
converted to the type of the destination variable or else stored in a different variable.
Operators and functions have no access to members of the outer scope.

ESDL variables are stored in C++ locals that are typed using the auto qualifier,
which infers the type from the value being assigned. Listing D.2 shows some exam-
ples of using auto and the equivalent type declarations.6 Here, auto saves esdlc from
having to infer the type of the expression, though integer constants are converted to
float to avoid later calculations being truncated. If the destination of an assignment
already exists, the decltype operator is used to cast the new value to the type of the
variable. This may result in errors when compiling the C++ code if the type of a
variable changes, although basic numeric types should always work correctly.

Groups are represented by instances of the esdlc::group class, which is templated
over the individual type. Listing D.3 shows the interface of group objects. The indi-
viduals are always stored on the GPU and referred to using the concurrency::array

564-bit floating-point values are also available on some GPU hardware and may be used to
increase precision at the expense of performance and memory consumption. The fact that most EAs
are inherently stochastic suggests that 32-bit is sufficient and the rounding errors (at approximately
the seventh most significant decimal digit) can be ignored.

6As a very recent addition to the C++ standard, it is worth noting that auto provides no func-
tionality beyond inferring the type of the expression being used to initialise the variable. After
declaration, the variable is identical to one declared explicitly.

APPENDIX D. PARALLEL EXECUTION 255

type. Groups can be manually copied to the CPU using the as_list and as_vector

methods, but otherwise no transfers from the GPU occur. Instances of shared_ptr

from the C++ standard library are used to avoid unnecessary copying of data on the
GPU (the default behaviour for concurrency::array), allowing instances of group to
be passed and returned to and from operators freely. A set of make_group() func-
tions are provided to create new groups, either based on a size value or by cloning
an existing group.

Since individuals are embedded in the group type, they may take any type pro-
vided it contains only the C++ AMP supported primitive types: int, unsigned int

and float. Listing D.4 shows the basic set of members for fixed-length and variable-
length individuals. The genome and fitness members are required to allow operators
to access the relevant data, though since individuals are only ever accessed through
a group, there is no need to derive from these structures—providing equivalently
named members is sufficient.

Evaluators are associated with a group through a shared pointer. Type erasure7

is used to store a pointer to any evaluator without changing the identity of the group.
The evaluate_using() method performs the erasure and updates evalptr to point
to the abstracted base class. Operators that require fitnesses call the evaluate()

method, which performs an evaluation if necessary.
Dynamic-length arrays cannot be used in C++ AMP, which is why the variable-

length individual reserves enough elements for the longest possible genome. (The
Shortest parameter is used by the generator rather than the type definition, but
may also be accessed later.) Individuals are allocated directly in the array stored
with the group, as is typical for C++ programs.8 This locality of data is critical
for efficient GPU implementation and also simplifies the issue of aliasing, since two
groups may only reference the same individual instance if they are actually the same
group.

All operators return new groups, which necessarily involves cloning the individ-
uals. Since the reference to the GPU array is created within the operator, no other
operators can access it until after returning, at which point the group should be
fully initialised. A pull model is used: each operator requests precisely the number
of individuals it requires from the preceding operator until reaching a merge opera-
tor that can fulfil the request. Section D.3.3 contains more details about operator
specification.

7Type erasure is a technique used to hide or ‘forget’ template type parameters, typically by
using inheritance (effectively a private abstract base class) and templated functions.

8More precisely, a two-dimensional array is created, where one dimension contains each individ-
ual and the other contains the elements of the fixed_individual or variable_individual structure.
C++ AMP hides this second dimension by exposing the array as a reference to the structure.

APPENDIX D. PARALLEL EXECUTION 256

template<typename IndividualType>
class group
{
shared_ptr<concurrency::array<IndividualType, 1>> ptr;
shared_ptr<_evaluator_erased_t<group<IndividualType>>> evalptr;

public:
bool evaluated;

void evaluate();
template<typename EvaluatorType>
void evaluate_using(shared_ptr<EvaluatorType> newEval);

operator bool() const;
concurrency::array<IndividualType, 1>& operator*();
concurrency::array<IndividualType, 1>* operator->();

list<IndividualType> as_list() const;
vector<IndividualType> as_vector() const;

int size() const;
void reset();

};

Listing D.3: Interface of the group class for cppamp.

template<typename ElementType, int Length>
struct fixed_individual {
ElementType genome[Length];
float fitness;

};

template<typename ElementType, int Shortest, int Longest>
struct variable_individual {
ElementType genome[Longest];
float fitness;
int length;

};

Listing D.4: Interfaces for fixed- and variable-length individuals.

APPENDIX D. PARALLEL EXECUTION 257

// FROM a, b SELECT 100 c, d USING crossover, mutation

decltype(a) _merge_1[] = { a, b };
auto _src_1 = esdl::merge(_merge_1);
auto _gen_1 = mutation(crossover(_src_1));
c = _gen_1(100);
d = _gen_1();

Listing D.5: C++ code generated for a FROM-SELECT statement.

YIELD is implemented by sorting the yielded group on the GPU and then copying
to the CPU, where it is scanned for minimum, maximum, mean and median fitness.
Depending on the output mode selected (see Section D.3.4), the entire group may
be written to the console or a file.

D.3.2 Sequence Model
ESDL statements are executed in the order specified, since the main performance
optimisation is obtained by parallelising the operators themselves rather than re-
ordering statements. C++ AMP executes lazily by default, which reduces overhead
by executing GPU kernels asynchronously only when the result is required, though
operator parameters are copied when scheduled and cannot be modified.

Code is generated for each store operation in almost identical fashion to esec.
Use of the auto type declaration, template-based operator definitions and mangled
variable names allows simple code to be generated. C++ lacks robust variable-length
parameter lists, and so merging multiple groups uses a locally declared array.9

Function calls are written to the generated code file in the same sequence as
specified in the ESDL definition. This ensures that functions will be executed in
the order specified, though due to C++ AMP’s lazy scheduling, potentially out of
order from store operations. Functions that access groups (by copying to the CPU)
will block until all preceding stores have completed. Side effects in functions are
permitted, though not recommended. The C++ code can be inspected and modified
before compilation, allowing developers to inject any required synchronisation or
shared state manually.

D.3.3 Extensibility Model
Operators and functions provided by users must be written in C++ and require the
use of templates. Each operator fully contains its own GPU code; the only interac-
tions between operators are the contents of groups. Since templates require method
implementations to be available where instantiated, the only linking mechanism

9Variadic templates could be used to support arbitrary numbers of parameters. However, the
only compiler supporting C++ AMP does not yet support variadics, so the array approach is
required.

APPENDIX D. PARALLEL EXECUTION 258

// ESDL generator: random_real(length=<int>10, lowest=(float)0, highest=(float)1)
// ESDL operator: fitness_sus(mu=(int)0)
// ESDL joiner: random_tuples(distinct=<bool>false)
// ESDL evaluator: sphere(origin=(float)0)
// ESDL function: es_adapt(source, current_step=(float)1)

Listing D.6: Specification comments for cppamp extensions.

required is including header files: ˋinclude pragmas in ESDL definitions are trans-
lated to C++ #include statements. To handle named parameters correctly, specially
marked comments are added to ˋincluded headers to indicate the names, positions,
types and default values of each parameter, as well as to distinguish between func-
tions, operators, joiners, generators and evaluators. Only the file specified in the
ˋinclude pragma is scanned for specifications, even if it includes other files. List-
ing D.6 shows some examples of specification comments.

Specification comments consist of three parts: the marker, the name and the
parameter list. The marker is the “ESDL …” text preceding the colon that identifies
the type of the extension element. These types are enforced by esdlc to ensure that
elements are used correctly. Names appear immediately after the colon and must
match both the name of the C++ function and the name to be used in ESDL. Since
C++ is case-sensitive, capitalisation must match the C++ function.

Four sets of information are embedded in a parameter list: the names of the valid
parameters, the order in which the C++ function expects them, the types to use and
the default values. Names are required for referencing each parameter in the ESDL
definition, but for code generation named parameters are converted to positional. If
a named parameter is omitted from the ESDL definition, the default value is used
in its position instead. The casts are optional, but when they exist are applied to
the value specified, whether it is a constant, an expression or a variable. ESDL
functions may omit default values, in which case an error occurs if those parameters
are not specified.

Parameter casts may be indicated with angle brackets for types of bool, int and
unsigned int. These parameters are not passed as normal values, but are provided
as compile-time constants using type parameters (one of true_type, false_type or
integral_constant). Templated parameters must be specified with a constant value
before code generation occurs. In some cases, such as specifying the length of an
individual, type parameters are necessary, while in others they are convenient for
producing efficient code. Listing D.7 includes an example of receiving a type pa-
rameter.

Apart from two exceptions, the source of every operator is another operator. The
built-in merge operator takes one or more groups and optionally one generator, while

APPENDIX D. PARALLEL EXECUTION 259

// ESDL operator: Operator(param1=(float)10, param2=<bool>false)

template<typename SourceType, bool param2>
class Operator_t {
typedef <...> IndividualType;

public:
Operator_t(SourceType source, float param1);
group<IndividualType> operator()(int count);
group<IndividualType> operator()();

};

template<typename SourceType, typename param2_t>
Operator_t<SourceType, param2_t::value>
Operator(SourceType _source, float param1, param2_t) {
return Operator_t<SourceType, param2_t::value>(_source, param1);

}

Listing D.7: Interface for cppamp operators.

joiners take multiple operators, typically instances of the merge operator. Operators
provide the operator() method to produce the result group. A size parameter allows
the caller to request as many individuals as required to fulfil its own request. An
overload without parameters allows operators to return all individuals; operators
that produce infinite streams should omit this overload to produce a compilation
error rather than a runtime out-of-memory error. Listing D.7 shows the general
interface for operators, though since type variance is handled using templates rather
than inheritance, operators only need to provide a matching interface, rather than
deriving from this class.

Implementing Operator as a factory function rather than naming the class Opera-

tor is primarily for the convenience of code generation, since C++ supports template
type inference on functions but not classes. Listing D.8 shows an example of the
code that would have to be generated if Listing D.5 had no template type inference.
Note that each operator now requires all of its parameters reproduced in order to
specify the types; without decltype() and auto, the code generator would be required
to perform C++ overload resolution, duplicating the most complicated part of a C++

compiler. Indirection through a function is an essential compromise.
Evaluators are provided as classes with a templated operator() overload taking

a reference to a group, which is evaluated in-place. The general outline is shown
in Listing D.9; note that there is no factory function, since the sphere class is not
templated (though its operator() method is). The group’s evaluated member is
tested and updated automatically and the evaluator does not need to handle it.

EVALUATE-USING statements instantiate the evaluator using the C++ standard li-
brary function make_shared. The evaluate_using() method handles the type erasure,

APPENDIX D. PARALLEL EXECUTION 260

// FROM a, b SELECT 100 c, d USING crossover, mutation

decltype(a) _merge_1[] = { a, b };
auto _src_1 = esdl::merge_t<decltype(a), 2>(_merge_1);
auto _gen_1 = mutation_t<decltype(crossover_t<decltype(_src_1)>(_src_1))>(

crossover_t<decltype(_src_1)>(_src_1));
c = _gen_1(100);
d = _gen_1();
for (int _i_1 = 0; _i_1 < 2; ++_i_1) _merge_1[_i_1].reset();

Listing D.8: C++ code that would be required for Listing D.5 without template type inference.

// ESDL evaluator: sphere(origin=(float)0)

struct sphere {
float origin;
sphere(float origin) : origin(origin) { }

template<typename IndividualType>
void operator()(esdl::group<IndividualType, sphere>& source) {

// Perform evaluation
...

}
};

Listing D.9: Outline of a sphere evaluator implementation.

// ESDL evaluator: c(d=(float)0)
// EVALUATE a, b USING c(d=100)

auto _eval_1 = std::make_shared<c>((float)100);
a.evaluate_using(_eval_1);
b.evaluate_using(_eval_1);
_eval_1.reset();

Listing D.10: C++ code generated for EVALUATE-USING statements.

APPENDIX D. PARALLEL EXECUTION 261

Table D.1: Command-line options for executables created with cppamp.
Command Meaning
/iteration:# (/iter, /i) Stop after the specified number of iterations
/fitness:# (/fit, /f) Stop when the best fitness is better or equal to the

value specified
/evaluations:# (/evals, /e) Stop after the specified number of fitness

evaluations
/csv Write CSV output the console
/verbose (/v) Write detailed output
/quiet (/q) Do not display any output
/seed:# (/s) Specify the seed value
<name>=# Set variable <name> to the value specified

resets the evaluated field and updates the group’s evaluator reference. After updat-
ing references, the local evaluator reference is reset to avoid keeping an unnecessary
reference; evaluate_using() increments the reference count for as long as each group
is associated with the evaluator. Listing D.10 shows the code generated for an
EVALUATE statement with a USING.

D.3.4 Command-line Options
Executable files created by esdlc, while following a fixed algorithm, provide a number
of settings that may be configured from the command line. These options are listed
in Table D.1. Termination conditions can be specified at the command line. If none
is set, the executable will pause after each iteration until a key is pressed; pressing
“x” will terminate the algorithm.10 The /quiet option disables all output, regardless
of other settings. Output is always sent to the console, allowing users to redirect to
files if desired.

Output formatting is controlled by _output<T> classes, which are specialised for
each individual and fitness type that may be displayed. For example, the _output-

<float> class is used to format floats. Normal output produces a formatted table as
shown in Listing D.11, while using the /csv option produces higher precision output
as shown in Listing D.12.

Adding the /verbose option displays the contents of each group as it is yielded.
Listings D.13 and D.14 show examples of verbose output with and without the /csv

option.
Seeding the random number generator is essential for running reproducible ex-

periments. By default, the seed is randomly selected; the /seed option may be used
to specify a known value. The random number generator used is based on a hybrid
Linear Congruential Generator and Combined Tausworth Generator [49]; the com-

10This also allows another process to control the algorithm by capturing its standard input and
output streams.

APPENDIX D. PARALLEL EXECUTION 262

Iter Evals | Best | Min Mean Med Max
--------------+--------+----------------------------

1 50 | -0.5 | -33 -2.6 -2.1 -0.5
2 100 | -0.5 | -28 -2.3 -1.4 -0.9
3 150 | -0.1 | -21 -1.9 -1.1 -0.1

--------------+--------+---------------------
Fitness limit reached

Iter Evals | Fitness | Genome
--------------+-----------+-------------------------

3 150 | -0.1 | [0.02, 0.04, -0.06]

Listing D.11: Normal output from a cppamp executable.

Iter, Evals, Best, Min, Mean, Med, Max
1, 50, -0.5013773, -33.29441, -2.572889, -2.098114, -0.5013773
2, 100, -0.5013773, -28.42933, -2.332981, -1.412944, -0.9134221
3, 150, -0.09982470, -21.02488, -1.910223, -1.145831, -0.09982470
Fitness limit reached
Iter, Evals, Fitness, Genome
3, 150, -0.09982470, 0.02093813, 0.03984101, -0.05832117

Listing D.12: CSV output from a cppamp executable.

Iteration 1
Block GENERATION
Yielded 5 offspring
Fitness | Genome
--------+--------

10.4 | 1011101
14.2 | 1101101
48.9 | 0001111
48.9 | 0001111
57.1 | 0100111

Yielded 2 population
Fitness | Genome
--------+--------

10.4 | 1011101
14.2 | 1101101

Iter Evals | Best | Min Mean Med Max
-------------+--------+-------------------------

1 5 | 10.4 | 14.2 12.3 12.3 10.4

Listing D.13: Verbose output from a cppamp executable.

APPENDIX D. PARALLEL EXECUTION 263

Iteration, Block, Group Size, Group Name
1, GENERATION, 5, offspring

Fitness, Genome
10.44, 1, 0, 1, 1, 1, 0, 1
14.18491, 1, 1, 0, 1, 1, 0, 1
48.97, 0, 0, 0, 1, 1, 1, 1
48.97, 0, 0, 0, 1, 1, 1, 1
57.07, 0, 1, 0, 0, 1, 1, 1

Iteration, Block, Group Size, Group Name
1, GENERATION, 2, population

Fitness, Genome
10.44, 1, 0, 1, 1, 1, 0, 1
14.18, 1, 1, 0, 1, 1, 0, 1

Iter, Evals, Best, Min, Mean, Med, Max
1, 5, 10.44, 14.18, 12.32, 12.32, 10.44

Listing D.14: Verbose CSV output from a cppamp executable.

monly used Mersenne Twister algorithm requires a large amount of state and is less
efficient for parallel applications.

Finally, any uninitialised variables from the ESDL definition require specification
on the command-line. Variables that are initialised cannot be overridden from the
command line. Attempting to run an executable without specifying all uninitialised
variables will fail and display a list of the names of the required variables. Names
are not case-sensitive and values may only be numeric. Implicit parameters are not
covered by this mechanism; any implicit parameter that has no other references in
the ESDL definition is compiled as true and cannot be respecified later.

D.4 cppamp emitter
esdlc includes a library and emitter for C++ AMP code. The library contains imple-
mentations of the operators in Appendix A that run on a GPU. Operator implemen-
tations are discussed in Section D.3—this section focuses on the code generation.
The code generated by the cppamp emitter could also be used with a compatible
CPU-based library, though none has been implemented.

C++ does not support the dynamic typing used by ESDL, nor does C++ AMP
have an iterator pattern similar to Python. However, the most recent C++ standard
provides useful features such as auto, decltype and improved templates that simplify
code generation for dynamic types [51]. The general approach used by the emitter
is to assume that ESDL variables do not change type—a variable initialised with a

APPENDIX D. PARALLEL EXECUTION 264

// x = 123
auto x = 123.000000f;

// x = 17 * 2
x = (decltype(x))(17.000000f * 2.000000f);

Listing D.15: Examples of C++ code generated for variables.

// FROM source SELECT group USING operator
auto _src_1 = esdl::merge(source);
auto _gen_1 = operator(_src_1);
auto group = _gen_1(); // first use of group

// FROM group SELECT 10 group USING operator
auto _src_2 = esdl::merge(group);
auto _gen_2 = operator(_src_2);
group = _gen_2((int)10.000000f); // second use of group

Listing D.16: Examples of C++ code generated for groups.

number will always contain a number. The first use of each variable is generated as
an auto initialiser, as shown in Listing D.15, while subsequent assignments force a
cast (if necessary) using decltype. All numbers are treated as float to avoid issues
due to integer division.

Groups are also declared with auto on first use and later uses are assumed to be
the same type, as shown in Listing D.16.

The generated C++ file is based on six sections, of which some are fixed templates
and others are created by the emitter:

1. Includes, which is created by adding an #include statement for each ˋinclude

pragma in the source.
2. Opening, which is mostly predefined. It includes the main() definition and most

command-line parsing, as well definitions for variables that are uninitialised
in the ESDL definition.

3. Variables, which is completely generated and specifies the command-line pars-
ing required to read values for externally provided variables.

4. Initialisation, which contains the code for the initialisation block.
5. Termination, which is fixed and tests the termination conditions including

iteration count and fitness.
6. Iteration, which is generated and includes the code for each named block as

well as invoking the selector for each iteration.
Apart from the initialisation block, every named block is written to the iteration
section in an if–else if structure that selects based on the string returned by the
selector. If no selector is provided with the ˋselector pragma, the modulus of the

APPENDIX D. PARALLEL EXECUTION 265

// Original ESDL:
// FROM population, offspring SELECT (99) population, rest USING best()

// Generated Code:
decltype(population) _merge_1[] = { population, offspring };
auto _src_1 = esdl::merge(_merge_1);
auto _gen_1 = best(_src_1);
population = _gen_1((int)99.000000f);
auto rest = _gen_1();
for (int _i_1 = 0; _i_1 < 2; ++_i_1) _merge_1[_i_1].reset();

Listing D.17: Generated C++ code for a store operation.

iteration count is used to select between multiple blocks. When only one named
block exists no if statements are needed, though a selector will still be invoked each
iteration if specified.

As with the esec emitter, a single function (_write_block, in this case) iterates
through the ESDL statements and delegates code generation to more specific func-
tions. Most of the processing is attached to the EmitterScope class, which maintains
both global and local declaration information. Each block uses a different Emitter-

Scope, though the initialisation block’s instance is available to all others. This en-
sures that C++ variables declared in the initialisation block, which are available to
other blocks, are not redeclared. However, variables declared within a block are not
shared and must be declared again if another block uses it. ESDL specifies that
blocks must be able to be executed in any order—the implication of this is that
groups and variables that are shared between blocks must always be initialised in
the initialisation section.

The _store_to_lines() function generates the code for store operations, returning
lines of code as a list. Source groups are passed to the esdl::merge operator directly
(when only one group or a group and a generator are passed) or using a temporary
array. The array is typed using the first group, implicitly requiring all merged groups
to be of the same type. After use, each element in the array has its reset() member
called to reduce its internal reference count.

Each operator in the chain is combined into a single statement, passing the
previous operator as the first parameter, with the result assigned to variable declared
with auto. Destination groups are assigned the result of taking the required number
of individuals from the operator; either a specified amount or all that are available.
Listing D.17 shows an example of the code generated for a store operation—the
suffix _1 increments for each store operation to avoid naming collisions.

Code generation for function calls, operator invocations and evaluator creation
was described in Section D.3.3 and does not require further discussion here.

APPENDIX D. PARALLEL EXECUTION 266

EVALUATE statements generate code that instantiates the new evaluator and up-
dates the groups. Type erasure is used internally to avoid having to encode the
evaluator type into the group type, which allows a group to have its evaluator re-
placed without needing to generate a new variable. If no evaluator is specified and
a default evaluator was given, it is assigned instead. The default evaluator is only
instantiated once and reused for all groups.

Yielded groups are evaluated, sorted and copied to the CPU. The statistics
collection is not as easily customisable as for esec; an included esdl::make_stats()

function collects the minimum, maximum, mean and median fitnesses and stores
the group in a local variable, primarily for viewing with a debugger. Depending on
the output settings, the contents of the group may be printed to the console. At the
end of the iteration the statistics for the default group (defined below) are printed.

Pragmas supported by the cppamp emitter are ˋcpp, ˋinclude, ˋevaluator, ˋselec-
tor and ˋyield. ˋcpp pragmas are treated as literal C++ and included in the generated
code. ˋinclude commands specify external header files to include and parse the file
for specification comments (see Section D.3.3). ˋevaluator is followed by an evaluator
specification, as for EVALUATE-USING statements, that will be used as the default
evaluator. The ˋselector pragma specifies a function name or call that will return a
std::wstring containing the name of the block to execute. Finally, the ˋyield pragma
indicates the default group, which is used for fitness-based termination conditions.
It is only necessary when no groups are yielded in the initialisation block; otherwise,
the first yielded group is used. All other pragmas are ignored silently.

Listing D.18 shows the code generated for the system in Listing C.8 (page 244)
by the cppamp emitter.

Listing D.18: C++ code generated by cppamp for Listing C.8.

#include <esdl.h>
#include "test.h"

int wmain(int _argc, wchar_t** _argv) {
int _esdl_iteration_limit = 0;
int _esdl_evaluation_limit = 0;

bool _esdl_has_iteration_limit = false;
bool _esdl_has_evaluation_limit = false;
bool _esdl_has_fitness_limit = false;
std::wistringstream _esdl_fitness_limit_string;

bool _esdl_quiet_output = false;
bool _esdl_verbose_output = false;
bool _esdl_csv_output = false;

int _esdl_seed = 0;

std::list<std::wstring> _esdl_uninitialised;

APPENDIX D. PARALLEL EXECUTION 267

float config = 0; _esdl_uninitialised.push_back(L"config");

int _argi = 0;
for (auto _arg = esdl::get_command(_argc, _argv, _argi); _arg; _arg = esdl::get_command(»
«_argc, _argv, _argi)) {

if (!_arg->command.empty()) {
if (esdl::equals(_arg->command, L"i", L"iter", L"iterations")) {

_arg->value >> _esdl_iteration_limit;
_esdl_has_iteration_limit = true;

} else if (esdl::equals(_arg->command, L"e", L"eval", L"evaluations")) {
_arg->value >> _esdl_evaluation_limit;
_esdl_has_evaluation_limit = true;

} else if (esdl::equals(_arg->command, L"f", L"fit", L"fitness")) {
_esdl_fitness_limit_string.str(_arg->value.str());
_esdl_has_fitness_limit = true;

} else if (esdl::equals(_arg->command, L"s", L"seed")) {
_arg->value >> _esdl_seed;

} else if (esdl::equals(_arg->command, L"csv")) {
_esdl_csv_output = true;

} else if (esdl::equals(_arg->command, L"v", L"verbose")) {
_esdl_verbose_output = true;

} else if (esdl::equals(_arg->command, L"q", L"quiet")) {
_esdl_quiet_output = true;

} else {
std::wcout << L"Unrecognised option: /" << _arg->command << std::endl;

}
} else if (esdl::equals(_arg->variable, L"config")) {

_arg->value >> config;
_esdl_uninitialised.remove(L"config");

}
}

if (!_esdl_uninitialised.empty()) {
std::wcerr << L"Uninitialised variables:" << std::endl;
std::for_each(std::begin(_esdl_uninitialised), std::end(_esdl_uninitialised), [](std::»
«wstring _var) { std::wcerr << L" " << _var << std::endl; });
return 1;

}

esdl::seed(_esdl_seed);

// `include "test.h"
// FROM random_binary(length=config.length.max) SELECT (100) population
auto _src_0 = random_binary(std::integral_constant<int, 10>(), (float)0.5f);
auto _gen_0 = _src_0;
auto population = _gen_0((int)100.000000f);

// t = 0.0
auto t = 0.000000f;
// delta_t = (-0.1)
auto delta_t = (-0.100000f);
// lambda = 100.0
auto lambda = 100.000000f;
// EVAL population USING evaluators.population(t)
auto _eval_1 = std::make_shared<evaluators::population>((float)t);
population.evaluate_using(_eval_1);
_eval_1.reset();

APPENDIX D. PARALLEL EXECUTION 268

// YIELD population
esdl::_default_statistics_name = L"population";
esdl::tt::fitness_type<decltype(population)>::type _esdl_fitness_limit;
if (_esdl_has_fitness_limit) {

_esdl_fitness_limit_string >> _esdl_fitness_limit;
}
if (!_esdl_quiet_output) {

esdl::write_statistics_header<typename esdl::tt::individual_type<decltype(population)>::»
«type>();

}
population.evaluate();
auto _esdl_population_group = esdl::make_stats(L"population", population);
if (!_esdl_quiet_output && _esdl_verbose_output) {

if (_esdl_csv_output) esdl::write_group_raw(L"population", _esdl_population_group);
else esdl::write_group(L"population", _esdl_population_group);

}
esdl::EndReason _reason;
for (;; _iteration += 1) {

if (!_esdl_quiet_output) {
esdl::write_statistics(esdl::default_statistics, _esdl_population_group.front());

}

if (!(_esdl_has_iteration_limit || _esdl_has_evaluation_limit || _esdl_has_fitness_limit)»
«) {

int c = esdl::getch();
if (c == 'x') break;

}
else if (_esdl_has_iteration_limit && _iteration > _esdl_iteration_limit) {

_reason = esdl::IterLimit;
break;

} else if (_esdl_has_evaluation_limit && _evaluations > _esdl_evaluation_limit) {
_reason = esdl::EvalLimit;
break;

} else if (_esdl_has_fitness_limit && _esdl_population_group.front().fitness > »
«_esdl_fitness_limit) {

_reason = esdl::FitLimit;
break;

}
// t = (t+(delta_t*1.4))
t = (decltype(t))(t+(delta_t*1.400000f));
// `py print(t)
// `cpp printf("%f\n", t);
printf("%f\n", t);
// REPEAT 10.0
int _repeat_limit_1 = (int)10.000000f;
for(int _repeat_1 = 0; _repeat_1 < _repeat_limit_1; ++_repeat_1) {

// FROM population SELECT (100) parents USING tournament(k=2.0, greediness=0.7)
auto _src_2 = esdl::merge(population);
auto _gen_2 = tournament(_src_2, (int)2.000000f, (float)0.700000f, std::true_type(), »

«std::false_type());
auto parents = _gen_2((int)100.000000f);

// FROM parents SELECT mutated USING mutate_delta(stepsize)
auto _src_3 = esdl::merge(parents);
auto _gen_3 = mutate_delta(_src_3, (float)1, (float)0.5, (float)1, (float)1, (int)0);
auto mutated = _gen_3();

APPENDIX D. PARALLEL EXECUTION 269

// FROM parents SELECT crossed USING uniform_crossover()
auto _src_4 = esdl::merge(parents);
auto _gen_4 = uniform_crossover(_src_4, (float)1);
auto crossed = _gen_4();

// EVAL mutated, crossed USING evaluator(t=t, lambda)
auto _eval_5 = std::make_shared<evaluator>((float)t, (int)lambda);
mutated.evaluate_using(_eval_5);
crossed.evaluate_using(_eval_5);
_eval_5.reset();

// JOIN mutated, crossed INTO merged USING tuples()
auto _src_6 = tuples(esdl::merge(mutated), esdl::merge(crossed));
auto _gen_6 = _src_6;
auto merged = _gen_6();

// FROM merged SELECT offspring USING best_of_tuple()
auto _src_7 = esdl::merge(merged);
auto _gen_7 = best_of_tuple(_src_7);
auto offspring = _gen_7();

// FROM population, offspring SELECT (99) population, rest USING best()
decltype(population) _merge_8[] = { population, offspring };
auto _src_8 = esdl::merge(_merge_8);
auto _gen_8 = best(_src_8);
population = _gen_8((int)99.000000f);
auto rest = _gen_8();
for (int _i_8 = 0; _i_8 < 2; ++_i_8) _merge_8[_i_8].reset();

// FROM rest SELECT (1) extras USING uniform_random()
auto _src_9 = esdl::merge(rest);
auto _gen_9 = uniform_random(_src_9);
auto extras = _gen_9((int)1.000000f);

// FROM population, rest, extras SELECT (100) population
decltype(population) _merge_10[] = { population, rest, extras };
auto _src_10 = esdl::merge(_merge_10);
auto _gen_10 = _src_10;
population = _gen_10((int)100.000000f);
for (int _i_10 = 0; _i_10 < 3; ++_i_10) _merge_10[_i_10].reset();

}
// EVAL population USING evaluators.config(t)
auto _eval_11 = std::make_shared<evaluators::config>((float)t);
population.evaluate_using(_eval_11);
_eval_11.reset();

// YIELD population
population.evaluate();
_esdl_population_group = esdl::make_stats(L"population", population);
if (!_esdl_quiet_output && _esdl_verbose_output) {

if (_esdl_csv_output) esdl::write_group_raw(L"population", _esdl_population_group);
else esdl::write_group(L"population", _esdl_population_group);

}
}

}

APPENDIX D. PARALLEL EXECUTION 270

271

Appendix E

esec Architecture

E.1 Overview
esec is a Python framework for EC that uses ESDL as its main configuration input.
Originally designed by Clinton Woodward to support the ecosystem model work
in [98], it was released for use by other EC researchers. esec has been used as a base
for experimentation relating to this work, with the updated version representing one
potential instantiation of ESDL and the associated EA model. The latest version is
available from http://esec.googlecode.com/.

esec includes the following features:
• Fully customisable algorithms using ESDL specification.
• A range of individual representations (esec.species) including binary, real-

valued, GP and GE.
• Standard benchmark problems (esec.landscape).
• Full unit test suite1 and documentation.2

• Flexible Python-based configuration files.
• Extensible reporting and data logging (esec.monitors).
• Supported by Python 2.6 and later.3

• Independent of operating system and platform.
The packages included in esec are shown in Figure E.1. Some of the names

reflect the original design rather than the names used in this work for equivalent
concepts, while others are artefacts of the software’s evolution. For example, the
landscape and species packages existed in the original design, while the generators

package was named to reflect the Python definition of the term (a programmable
iterator roughly equivalent to a map function) rather than the ESDL definition (a

1Using the nose package, which is available online at http://readthedocs.org/docs/nose/en/
latest/.

2Using epydoc, which is available online at http://epydoc.sourceforge.net/.
3The 2to3 tool must be used before esec can be used with Python 3.0 or later.

http://esec.googlecode.com/
http://readthedocs.org/docs/nose/en/latest/
http://readthedocs.org/docs/nose/en/latest/
http://epydoc.sourceforge.net/

APPENDIX E. ESEC ARCHITECTURE 272

esec

generators

filters

joiners

selectors

landscape

binary

ge

integer

real

sequence

tgp

monitors

consolemonitor

csvmonitor

multimonitor

multitarget

posttarget

species

binary

ge

integer

real

sequence

tgp

binary_int

binary_real

utils

attributedict

configdict

exceptions

context

experiment

fitness

individual

system

esdlc

tests

esdlc

generators

landscape

species

Figure E.1: esec package hierarchy.

pseudo-group containing an infinite number of individuals). Renaming the packages
is a significant breaking change with too many unpredictable effects, particularly
considering the software has been publicly available throughout its development.

The following sections describe the architecture, extensibility and use of esec.
It is not complete documentation, but is intended to provide an overview for those
new to the framework. Thorough documentation is included in the code and can be
extracted using epydoc.

E.2 Python
The Python programming language was used for implementing esec. Python is a
strong, dynamically typed language that has interpreters and compilers for many
platforms. It does not strictly adhere to any programming paradigm, but can sup-
port imperative, object-oriented and functional programming styles among others.
Importantly for this application, Python has intrinsic support for lists and itera-
tors, including functions such as filter and map. Listing E.1 shows some examples
of Python list and tuple syntax; lines beginning with >>> are code and others are
the value of the preceding expression.

Python’s dynamic typing means that the contents of collections may be non-
homogeneous; any data type may be stored in a list that is used by code with no prior
knowledge of its contents. Further, Python’s dynamic name binding allows objects to
fulfil a required interface by providing a member with a matching name. Listing E.2

APPENDIX E. ESEC ARCHITECTURE 273

>>> x = [1, 2, 3] # list (mutable)
>>> y = (4, 5, 6) # tuple (immutable)
>>> z = x + y # concatenation
>>> z
[1, 2, 3, 4, 5, 6]
>>> z[1:4] # slice
[2, 3, 4]
>>> map(lambda i: i*10, x)
[10, 20, 30]
>>> filter(lambda i: i>=5, y)
[5, 6]

Listing E.1: Lists and iterators in Python.

class Rectangle:
def draw(self):

...
class Circle:

def draw(self):
...

shapes = [Rectangle(), Circle()] # each class is instantiated here
for s in shapes:

s.draw()

Listing E.2: Dynamic typing and name binding in Python.

shows an example of a list containing two different objects, a loop iterating over this
list and invocation of two different (unwritten, in this example) functions.

Python classes and functions are instances of regular objects, which allows them
to be treated identically to any other object. Lists or dictionaries may contain them
(classes in Python are little more than a dictionary of member functions) and they
can be passed as parameters to other functions. Listing E.3 shows an example of
calling a function func with either a function or a class as the parameter. Since both
types are callable, func can be used generically.

Modules, the equivalent of namespaces, are also based on regular objects and
can be loaded from source files at runtime. Python provides run-time compilation
of code from strings that returns an object that either contains callables (like a
module) or is callable (like a function or class). Listing E.4 shows some examples
of using Python’s exec function to compile and execute code at runtime.

With these features, an interactive EA framework using ESDL can be created
that allows researchers to easily create novel algorithms, integrate externally pro-
vided evaluators and produce results suitable for publication.

APPENDIX E. ESEC ARCHITECTURE 274

def func(t):
return t(100)

def double(v):
return v + v

class ValueStore:
def __init__(self, v):

self.value = v

>>> func(double)
200
>>> func(ValueStore)
<ValueStore object>

Listing E.3: Dictionaries and first-class types and functions in Python.

>>> statement = 'print("Hello, from exec.")'
>>> exec(statement)
Hello, from exec.

>>> function = '''
... def doubler(x):
... print(2 * x)'''
>>> doubler(10) # have not compiled the function yet
NameError: name 'doubler' is not defined

>>> exec(function) # creates doubler globally
>>> doubler(10)
20

>>> scope = { }
>>> exec(function, scope) # creates doubler in scope
>>> scope['doubler']
<function doubler>
>>> scope['doubler'](10)
20

Listing E.4: Dynamic compilation and invocation in Python.

APPENDIX E. ESEC ARCHITECTURE 275

experiment.begin()

while experiment.step(always_step=False):
pass

experiment.close()

Listing E.5: Python code to run an entire experiment.

E.3 Architecture

E.3.1 Experiments
The central class is esec.experiment.Experiment. It is instantiated with a configura-
tion dictionary (Section E.4.1) that specifies the algorithm and all required settings.
The public interface includes begin(), step() and end() functions: most algorithms
can be run with the code in Listing E.5, which is provided as the Experiment.run()

function.
Experiment defers most of the processing work to an instance of esec.system.-

System, which compiles the ESDL definition, calls the selector and invokes the re-
quired block (as described in Section 4.3, page 74). Compilation is performed by
esdlc, which is included as a package.

The esec.context module provides access to the active blackboard dictionary
(esec.context.context), the original configuration dictionary (esec.context.config),
random number generator (esec.context.rand; an instance of random.Random) and
notification method (esec.context.notify()). Each of these are thread-local, which
prevents multiple experiments from being run on the same thread but allows in-
dependent experiments to be constructed and executed on separate threads. esec

typically runs only a single experiment.
Accessing the blackboard outside ESDL code is discouraged, but permitted in

esec for flexibility. A similar rationale applies to the configuration dictionary, which
may not be identical to the original and is effectively read-only. However, the shared
random number generator is essential to ensuring experiments are reproducible:
a seed may have been provided in the configuration. The notify(sender, name,

value) function allows indirect communication with the monitor (Section E.3.3)
from operators, evaluators or external functions.

E.3.2 Species
Species classes define individual representations and sets of applicable operators.
A species defines the ESDL generators that produce its individuals. When the
individuals are created, they are given a reference to their species, which is treated as

APPENDIX E. ESEC ARCHITECTURE 276

a base class (through an override of __getattr__). The abstract esec.species.Species
class provides support for obtaining parameters through the configuration dictionary,
exposing functions in a species class’s public_context dictionary to ESDL code and
a range of representation-independent operators, such as discrete and point-based
crossover.

Creating a new species typically requires defining an individual class, derived
from esec.individual.Individual, as well as one derived from Species. By conven-
tion, individual classes contain the breeding representation in a property genome,
the solution representation in a property phenome, user-readable versions of each of
these in genome_string and phenome_string and a string describing the length of the
individual in length_string. Separation into multiple properties allows represen-
tations such as the BinaryIntegerSpecies, which has a genome containing bits but
a phenome of integer values generated from these bits based on a flexible mapping
process. Operators should normally only access genome, while evaluators use phe-

nome. The length_string property allows, for example, GP individuals to display
both node count and tree depth; len(genome) and len(phenome) return the number
of automatically-defined functions [55].

Species classes typically include implementations of operators that are specific
to that representation. Python does not (easily) support overloading based on type,
so unknown operators are looked up on the individual type and then the species.
This allows both real and integer-valued individuals, as well as other user-defined
species, to define operators such as mutate_delta without suffering naming collisions
or invalid behaviour.

E.3.3 Monitors
Monitors provide the interface between the user and the experiment. They use an
event-based model, where System invokes specific functions in response to a range
of events. Table E.1 shows the function signatures required to exist on a moni-
tor. In all cases, sender is the System instance raising the event. Deriving a moni-
tor from esec.monitors.MonitorBase provides no-operation implementations of these
functions, allowing only those required to be overridden.

The should_terminate() function almost always needs to be specified: the de-
fault in MonitorBase is to return True, which prevents algorithms from running any
blocks after initialisation. For most research experiments, ConsoleMonitor and CSV-

Monitor are sufficient, since they provide basic statistics collection (in on_yield()),
customisable termination conditions and flexible reporting formats. However, inter-
active applications may want to create a monitor that can communicate with a user
interface.

APPENDIX E. ESEC ARCHITECTURE 277

Table E.1: Event handlers required on monitors.
Function Event
on_yield(sender, group_name, group) On YIELD statements
on_notify(sender, name, value) On notify() calls
on_pre_reset(sender) Before calling initialisation block
on_post_reset(sender) After calling initialisation block
on_pre_breed(sender) Before calling selector and named block
on_post_breed(sender) After calling named block
on_run_start(sender) At start of a run, before on_pre_reset
on_run_end(sender) At end of a run
on_exception(sender, When an exception is raised in a block

exc_type, exc_value, trace)
should_terminate(sender) -> bool Before each block, returns True to finish

A monitor is provided to Experiment as part of the configuration dictionary under
the 'monitor' key.4 An instance may be specified directly, or a dictionary with a
'class' value and other parameters can be given. The advantage of specifying a class
and parameters is the ability to override settings directly from the command-line as
demonstrated in Section E.4.2.

E.3.4 Landscapes
Although evaluators can be relatively simple functions, esec supports rich problem
landscapes that may be parameterised through the configuration dictionary, pro-
vide feedback on individual legality, display textual information at varying degrees
of verbosity and trivially provide maximising or minimising fitnesses. Landscape
classes that derive from esec.landscape.Landscape or one of its typed subclasses such
as esec.landscape.real.Real or esec.landscape.binary.Binary only need add a func-
tion _eval(individual) that returns a fitness (either a number or an instance of
esec.fitness.Fitness). Class variables for syntax and default allow configuration
dictionary entries to be validated, while the maximise property ensures the correct
sense is used for numeric fitnesses.

General evaluator objects provide an eval(individual) function returning an in-
stance of Fitness or a subclass specifying the sense (such as FitnessMaximise or
FitnessMinimise); the rich landscapes provide an eval() implementation that invokes
the _eval() function and adds the correct Fitness class. Unless overridden incor-
rectly (by not passing the **other_cfg parameter through), all the provided classes
derived from Landscape can be used directly in EVALUATE-USING statements with all
settings given as named parameters (dotted names are specified with underscores
rather than periods).

4Multiple monitors may be provided using the MultiMonitor class, which forwards events to a
list of monitors.

APPENDIX E. ESEC ARCHITECTURE 278

Experiment.syntax = {
'random_seed': [int, None],
'monitor': '*', # pre-initialised MonitorBase instance, class or dict
'landscape': '*', # validated by Landscape
'system': '*', # validated by System
'selector?': '*', # validated by System
'verbose': int,

}

Listing E.6: Configuration syntax from the Experiment class.

E.4 Use
esec provides two primary modes of use. For those wanting to include full ESDL
support in their own project, the Experiment class may be used directly to construct
and execute algorithms. Those who are interested in statistical analysis and per-
formance of algorithms can use the provided run.py script. Both approaches use
configuration dictionaries. The following sections describe how these dictionaries
work and the two approaches to using esec.

E.4.1 Configuration Dictionaries
Python provides a built-in dictionary type that maps from a key to a value. The
key and value may be of any type and there is no requirement for all the keys or
values in a dictionary to be the same type. This flexibility, combined with a minimal
syntax, makes dictionaries a simple way to provide arbitrary sets of parameters.

The configuration dictionaries used in esec are an extension of Python dictionar-
ies to provide a consistent approach to specifying and validating syntax, including
default values and segregating data. A single configuration dictionary contains all
the settings for an experiment, including the system definition, external operators
and functions, the evaluator and parameters, a monitor and its parameters, random
seed and debug settings. The ConfigDict.validate() function allows a dictionary
containing type information to be compared against the configuration dictionary to
ensure all required values have been provided and are the correct types.

For example, Listing E.6 shows the syntax used in the Experiment class. Any
configuration dictionary provided must include these keys (except 'selector', which
is optional, as denoted by the ? suffix). The value for 'random_seed' must be an
integer or None, 'verbose' must be an integer and the rest are unrestricted.

This is a relatively basic use. Consider the esec.landscape.real.Stabilising class,
which has an inheritance hierarchy leading back to esec.landscape.Landscape. The
syntax dictionaries through these classes (Listing E.7) are merged automatically to

APPENDIX E. ESEC ARCHITECTURE 279

Landscape.syntax = {
'class?': type,
'instance?': '*',
'random_seed': [int, None],
'invert?': bool,
'offset?': float,
'parameters': [None, int],
'size': {

'min': int,
'max': int,
'exact': int

},
}

Real.syntax = {
'lower_bounds?': [tuple, list, int, float, str, None],
'upper_bounds?': [tuple, list, int, float, str, None],

}

Stabilising.syntax = {
'mean': float

}

Listing E.7: Configuration syntax for the Landscape, Real and Stabilising classes.

produce the syntax used (Listing E.8) to validate the value for 'landscape' in the
configuration dictionary.

This approach to merged syntax allows similar classes to automatically provide
common parameters while only specifying those that are new or changed. Default
values are similarly specified and merged. Including default values simplifies the
specification of an experiment, since only some values need to be specified.

E.4.2 run.py Script
The run.py script provides a command-line and file interface for constructing con-
figuration dictionaries. Its main option is --config (abbreviated to -c) which takes
a list of configuration names separated by plus symbols (+). Each name refers to a
predefined dictionary containing part of a complete configuration. As each name is
specified, the associated dictionary is overlaid onto the configuration dictionary by
adding or replacing values recursively. Names are defined in run.py, loaded from di-

alects.py, automatically generated for all known landscapes or loaded dynamically
from files or other names.

As an example, passing “-c RVP.Sphere+n2+GA+csv” sets the landscape to the real-
valued sphere (RVP.Sphere, generated from a list of landscapes) with two dimensions
(n2, specified in run.py) running a standard GA (GA, loaded from dialects.py) and

APPENDIX E. ESEC ARCHITECTURE 280

merge_cls_dicts(self, 'syntax') = {
'class?': type,
'instance?': '*',
'random_seed': [int, None],
'invert?': bool,
'offset?': float,
'parameters': [None, int],
'size': {

'min': int,
'max': int,
'exact': int

},
'lower_bounds?': [tuple, list, int, float, str, None],
'upper_bounds?': [tuple, list, int, float, str, None],
'mean': float

}

Listing E.8: Merged configuration syntax for the Stabilising landscape.

writing the results to CSV files (csv, specified in run.py). Names are case-sensitive
and always applied in the order specified.

New configuration names are provided by creating a Python file in the esec/-

cfgs directory. If a configuration name is not found among the predefined options,
this directory is searched for a file with the same name (dotted names, like RVP.-

Sphere, recurse into subdirectories if they exist). The file is executed and should
define a dictionary config with the configuration dictionary elements to be set. A
dictionary configs may also be provided that contains new configuration names to
allow later in the same command. For example, a configuration with three common
parameter sets could specify each set as a configuration name rather than three
separate configuration files.

As well as using configuration names, the --settings command-line option (ab-
breviated to -s) can be used to override individual values. For example, passing
“-s monitor.limits.iterations=100;random_seed=1” will set the iteration limit to one
hundred and the seed to one regardless of the underlying configuration. This option
is a convenience for quickly testing with alternate settings—everything that can be
specified using --settings could also be included in a configuration file.

The third important command-line option is --batch (abbreviated to -b). Con-
figuration files, along with the config variable, can declare a function called batch()

that returns a sequence of batch descriptors, each of which defines an entire exper-
iment to be run. A batch descriptor is a dictionary mapping any or all of 'names',
'config', 'settings' and 'tags' to appropriate values. The 'names' value contains a
string using the same format as for the --config command line option: each config-
uration name is appended to the configuration dictionary. After names are applied,

APPENDIX E. ESEC ARCHITECTURE 281

Table E.2: run.py batch settings.
Setting Name Description
batch.dry_run If True, does not run any experiments, but still creates and

saves the configuration dictionaries.
batch.start_at The index of the descriptor to run first; all previous ones

are skipped.
batch.stop_at The index of the descriptor to run last; all later ones are

skipped.
batch.include_tags A list of tags, where at least one must be in a descriptor for

it to be run.
batch.exclude_tags A list of tags, where none must be in a descriptor for it to

be run.
batch.summary If True, writes a summary file containing the final results

line from each experiment.
batch.csv If True, writes output using CSVMonitor rather than

ConsoleMonitor.
batch.low_priority If True, attempts to reduce the priority of the Python

process.
batch.quiet If True, minimises the output displayed during each run.
batch.pathbase An optional string specifying the path where output files

are written. By default, it is “results/” followed by the
configuration file name.

the dictionary in 'config' is overlaid, followed by the list of overrides in 'settings',
which matches the format for --settings.

Tags can be applied to each descriptor to simplify executing only a subset of
the configurations. The value in the descriptor for 'tags' is a list of strings. When
starting a batch, tags may be marked as ‘included’ or ‘excluded.’ If no tags are
marked, all configurations will run. If any tags are included, only batch descriptors
containing at least one of those tags will run. When any tags are excluded, any
batch descriptor containing any of those tags will not run.

Batch runs can be configured using a settings variable in the configuration file
that contains a string with any of the settings in Table E.2. The default settings run
all available batch descriptors with as much output and as high a priority as possible.
Specifying a settings string such as “batch.low_priority=True;batch.quiet=True” is
convenient for running experiments in the background. Included and excluded tags
may be specified in this string, however it is simpler to specify them on the command
line. The --batch option is followed by the name of the configuration file, which
must appear first, then tag names joined with plus symbols (+). Tags with a leading
exclamation mark (!) are excluded, while others are included. For example, “-b
DERosenbrock+F1.2+!CR0.0” will use the DERosenbrock.py configuration file, running
all experiments tagged with F1.2 except for those with CR0.0.

APPENDIX E. ESEC ARCHITECTURE 282

Figure E.2: Screenshots of esecui.

E.4.3 Embedding esec

For Python-based projects, embedding esec is a simple matter of importing and
instantiating the Experiment class. Providing a complete configuration dictionary
remains the easiest way to configure the experiment, though a Python project could
also use operators directly if desired.

Projects that are not written in Python can still integrate esec by either host-
ing a Python interpreter or creating configuration files while executing. Hosted
Python normally allows the larger application to interact directly with the exper-
iment, typically through a custom monitor. CPython supports being embedded
in most languages using a C-style interface, while IronPython5 can be hosted in
applications that use the Microsoft .NET Framework.

For example, esecui is written in C# and hosts IronPython to run esec. Config-
uration dictionaries are created as C# Dictionary<string, object> classes and used
directly by esec, while a custom monitor class is implemented in C# to handle events.
Figure E.2 shows some screenshots of esecui, which has source code and executable
available from http://esecui.googlecode.com/.

E.5 Extensibility
While esec can be extended by adding new classes to the packages discussed, the
plugin mechanism is generally simpler when using the run.py command-line interface
(Section E.4). Python code files may be added to the esec/plugins directory as either

5An implementation of Python for the .NET Framework. Details are available online at http:
//ironpython.net/.

http://esecui.googlecode.com/
http://ironpython.net/
http://ironpython.net/

APPENDIX E. ESEC ARCHITECTURE 283

a module or a package with the plugin name. These files can define new species,
landscapes and operators, which are made available whenever the plugin is specified.

A new species can derive from an existing species or the esec.species.Species

class. Calling the esec.species.include() function with the new species class makes
its generators available to the ESDL system. New configuration names may be
added by defining a configs dictionary, and a defaults dictionary may be provided
to add operators to the system or include a landscape.

For example, esec comes with a plugin providing a Max Set of Gaussians land-
scape generator [40]. The landscape depends upon the numpy package6 and including
it in the esec.landscape package would extend this dependency to all of esec. When
RVP.MSG is specified as a configuration name, the plugin is loaded. In the RVP.MSG.py

file is the MSG landscape class, a helper class and a defaults dictionary. The def-

aults dictionary sets the landscape to be the generator, which makes the behaviour
of specifying RVP.MSG as a configuration identical to specifying any of the built-in
landscapes.

A second plugin is for ACO. This plugin is provided as a package, in the esec/-

plugins/ACO directory. In this case, the __init__.py file is imported when ACO is
given as a configuration name. Here, a new species (plugins.ACO.tsp.TourSpecies)
and two configuration names (configs['ACO.TSP'] and configs['berlin52']) are pro-
vided. The ACO.TSP configuration name specifies a system definition, adds a create_-

pheromone_map function to the ESDL system, specifies the built-in esec.landscape.-

sequence.TSP landscape and defines a more suitable default monitor format. The
berlin52 configuration provides values for the landscape and adds the optimum fit-
ness for the landscape as a termination condition. Specifying “-c ACO+ACO.TSP+ber-

lin52” will load the plugin, apply the two configurations and run ACO7 until the
best fitness is found.

For configuration files, rather than command-line configuration, plugin classes
can be imported as members of the plugins package. This will typically include the
species, though default values and configuration names will generally not be merged.
For example, “import plugins.ACO” is sufficient to gain access to the build_tours

generator, but plugins.ACO.pheromone.PheromoneMap must be added to the system
manually, where the plugin normally includes it as part of the ACO.TSP configuration
name.

Simpler extensions, such as a single operator or evaluator, can be specified di-
rectly in configuration files. esec.esdl_func and esec.esdl_eval are function decora-
tors that may be applied to make Python functions available in the ESDL definition;

6Available online from http://numpy.scipy.org/.
7The default system definition actually specifies Ant System [25]. The plugin, however, supports

a range of stigmergy or pheromone-based algorithms.

http://numpy.scipy.org/

APPENDIX E. ESEC ARCHITECTURE 284

from esec import esdl_func, esdl_eval

def func(param): # functions don't need default values
...
return result

@esdl_func
def operator(_source, param=0): # _source receives the input stream

for indiv in _source:
...
yield new_indiv

@esdl_eval
def sphere(indiv):

return sum(x**2 for x in indiv)

@esdl_eval implicitly creates the following class
#class sphere_class:
def eval(self, indiv):
return sum(x**2 for x in indiv)

config = {
'system': {

'function': func, # names may differ, if desired
#'operator': operator, # this is implied by @esdl_func
#'sphere': sphere_class, # this is implied by @esdl_eval
'definition': '''

v = function(param=100) # use the name given in the dictionary

FROM random_real SELECT 100 population USING operator
EVALUATE population USING sphere
''' }
}

Listing E.9: Example of providing external Python functions in a configuration dictionary.

otherwise, a direct reference may be made in the 'system' member of the configu-
ration dictionary. Listing E.9 shows an example of including Python functions in a
configuration file.

E.6 Summary
esec is the implementation of ESDL that was described in Chapter 6. It takes
advantage of the dynamic features of Python to provide a framework capable of
running experiments, investigating extensions to ESDL, rapidly prototyping and
designing algorithms, and embedding in other applications.

Source code to esec is available online at http://esec.googlecode.com/.

http://esec.googlecode.com/

285

Appendix F

Comparison Code

Chapter 6 discussed how ESDL can provide significant benefits to those working with
EAs. One of these benefits is that precise algorithm descriptions can be specified
with less code. This appendix contains the sections of code that were compared. Full
code files that are compilable or executable with the associated library are available
to download from http://stevedower.id.au/thesis.

F.1 Evolution Strategies

esec configuration file for ES

import math
import esec.landscape.real

def random_indiv(length=10):
from esec.context import rand, context
for indiv in context['random_real'](length=length, lowest=-5, highest=5):

indiv.strategy = [rand.random() * 0.5 for _ in xrange(int(length))]
yield indiv

def es_mutate(_source):
from esec.context import rand
for indiv in _source:

n = len(indiv)
new_strategy = []
new_solution = []
for (value, stddev) in zip(indiv, indiv.strategy):

new_strategy.append(stddev * math.exp(
rand.gauss(0, 1) * math.sqrt(4/n) +
rand.gauss(0, 1) / (2*n)))

new_solution.append(value + new_strategy[-1] * rand.gauss(0, 1))
yield type(indiv)(new_solution, indiv, strategy=new_strategy)

SYSTEM_DEFINITION = r'''
FROM random_indiv(length=2) SELECT 20 population
YIELD population

BEGIN iteration
FROM population SELECT 40 offspring USING repeated, es_mutate

http://stevedower.id.au/thesis

APPENDIX F. COMPARISON CODE 286

FROM population, offspring SELECT 20 population USING best
YIELD population

END
'''

config = {
'system': {

'definition': SYSTEM_DEFINITION,
'random_indiv': random_indiv,
'es_mutate': es_mutate,

},
'landscape': { 'class': esec.landscape.real.Sphere, 'parameters': 2 },
'monitor': {

'report': 'brief+local+time_delta',
'summary': 'status+brief+best_genome',
'limits': { 'iterations': 50 }

},
}

ECJ parameter file for ES

parent.0 = ECJ/ec/ec.params

eval.problem = ec.app.ecsuite.ECSuite
eval.problem.type = sphere

state = ec.simple.SimpleEvolutionState
init = ec.simple.SimpleInitializer
finish = ec.simple.SimpleFinisher
exch = ec.simple.SimpleExchanger
eval = ec.simple.SimpleEvaluator
stat = ec.simple.SimpleStatistics
generations = 50
quit-on-run-complete = true
pop = ec.Population
pop.subpops = 1
pop.subpop.0 = ec.Subpopulation
pop.subpop.0.duplicate-retries = 0
pop.subpop.0.species = ec.vector.FloatVectorSpecies
pop.subpop.0.species.pipe = ec.vector.breed.VectorMutationPipeline
pop.subpop.0.species.pipe.source.0 = ec.es.ESSelection

pop.subpop.0.species.fitness = ec.simple.SimpleFitness
pop.subpop.0.species.ind = dower.es.ESIndividual
pop.subpop.0.species.mutation-bounded = true

pop.subpop.0.species.min-gene = -5
pop.subpop.0.species.max-gene = 5
pop.subpop.0.species.genome-size = 2

es.mu.0 = 20
es.lambda.0 = 40
breed = ec.es.MuPlusLambdaBreeder

pop.subpop.0.species.mutation-prob = 1.0
pop.subpop.0.species.mutation-type = gauss
pop.subpop.0.species.mutation-stdev = 1.0

APPENDIX F. COMPARISON CODE 287

pop.subpop.0.size = 30

public void defaultCrossover(EvolutionState state, int thread,
VectorIndividual ind)
{ }

public void defaultMutate(EvolutionState state, int thread)
{
FloatVectorSpecies s = (FloatVectorSpecies) species;
boolean mutationIsBounded = s.mutationIsBounded;
MersenneTwisterFast rng = state.random[thread];
for (int x = 0; x < genome.length && x < strategy.length; x++)

{
double min = s.minGene(x);
double max = s.maxGene(x);
double stdev = strategy[x];

stdev = stdev * Math.exp(rng.nextGaussian() * Math.sqrt(4.0 / genome.length) +
rng.nextGaussian() * (2.0 * genome.length));

genome[x] = rng.nextGaussian() * stdev + genome[x];
}

}

public void reset(EvolutionState state, int thread)
{
super.reset(state, thread);

FloatVectorSpecies s = (FloatVectorSpecies) species;
for (int x = 0; x < strategy.length; x++)

strategy[x] = (state.random[thread].nextDouble() * 0.5);
}

FakeEALib program for ES

using System;
using System.Collections.Generic;
using FakeEALib;

namespace FakeEALib.Experiments {
class EvolutionStrategy {

public static void Run() {
var population = new Populations.RealWithStrategy(10, -5.0, 5.0, 0.0, 0.5);
var offspring = new Populations.RealWithStrategy(10, -5.0, 5.0, 0.0, 0.5);
population.Evaluator = new Evaluators.Real.Sphere();

offspring.Select.Add(new Selectors.Clone());
offspring.Variation.Add(new MutateES());
offspring.VariationMode = Operators.VariationMode.Replace;
offspring.Sort.Add(new Sorters.Best());
offspring.Filter.Add(new Filters.Truncate(20));
offspring.Evaluator = population.Evaluator;

population.CreateRandom(20);

population.Evaluate();
Console.WriteLine("Iter | Best Fit | Mean Fit | Worst Fit");

APPENDIX F. COMPARISON CODE 288

Console.WriteLine("{0} | {1} | {2} | {3}",
0, population.Best.Fitness, population.MeanFitness, population.Worst.Fitness);

for (int iteration = 1; iteration <= 50; ++iteration) {
population.Evaluate();
offspring.Clear();
offspring.AddClonedRange(population);
offspring.AddClonedRange(population);
offspring.Vary();
offspring.AddRange(population);
offspring.Evaluate();
offspring.SortFilter();

population.Clear();
population.AddRange(offspring);

Console.WriteLine("{0} | {1} | {2} | {3}",
iteration, population.Best.Fitness, population.MeanFitness, population.»

«Worst.Fitness);
}

Console.WriteLine("Best: {0} [{1}]", population.Best.Fitness, population.Best.»
«ToString());

}
}

class MutateES : Operators.IOperator {
public void Vary(IList<Populations.IIndividual> source, int index) {

var indiv = (Populations.IRealIndividualWithStrategy)source[index];

for (int i = 0; i < indiv.Count; ++i) {
indiv.Strategy[i] *= Math.Exp(

Random.Normal() * Math.Sqrt(4.0 / indiv.Count) +
Random.Normal() / (2.0 * indiv.Count));

indiv[i] += indiv.Strategy[i] * Random.Normal();
}

}
}

}

Full C# program for ES

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace FullAlgorithms {
static class EvolutionStrategy {

private class Individual : IComparable<Individual> {
public readonly double[] Genome;
public readonly double[] Strategy;
public double Fitness;

public Individual(int length) {
Genome = new double[length];
Strategy = new double[length];

APPENDIX F. COMPARISON CODE 289

}

public int CompareTo(Individual other) {
return other.Fitness.CompareTo(Fitness);

}

public override string ToString() {
return String.Join(", ", Genome);

}
}

private static double? _NextGauss = null;
private static double Normal(this Random rnd) {

if (_NextGauss.HasValue) {
var value = _NextGauss.Value;
_NextGauss = null;
return value;

} else {
double x2pi = rnd.NextDouble() * Math.PI * 2;
double g2rad = Math.Sqrt(-2.0 * Math.Log(1.0 - rnd.NextDouble()));
_NextGauss = Math.Sin(x2pi) * g2rad;
return Math.Cos(x2pi) * g2rad;

}
}

private static void PrintSummary(int iteration, List<Individual> indivs) {
indivs.Sort();
double total = 0;
foreach (var indiv in indivs) {

total += indiv.Fitness;
}
double average = total / indivs.Count;

Console.WriteLine("{0} | {1} | {2} | {3}",
iteration, indivs[0].Fitness, average, indivs[indivs.Count - 1].Fitness);

}

public static void Run() {
var rnd = new Random();
var population = new List<Individual>();

for (int i = 0; i < 20; ++i) {
var indiv = new Individual(10);
for (int j = 0; j < indiv.Genome.Length; ++j) {

indiv.Genome[j] = rnd.NextDouble() * 10 - 5;
indiv.Strategy[j] = rnd.NextDouble() * 0.5;

}
population.Add(indiv);

}

foreach (var indiv in population) {
double total = 0;
for (int j = 0; j < indiv.Genome.Length; ++j) {

total += indiv.Genome[j] * indiv.Genome[j];
}
indiv.Fitness = -total;

}

APPENDIX F. COMPARISON CODE 290

Console.WriteLine("Iter | Best Fit | Mean Fit | Worst Fit");
PrintSummary(0, population);

for (int iteration = 1; iteration <= 50; ++iteration) {
var offspring = new List<Individual>();
for (int i = 0; i < 2; ++i) {

foreach (var indiv in population) {
var child = new Individual(10);
for (int j = 0; j < indiv.Genome.Length; ++j) {

child.Strategy[j] = indiv.Strategy[j] * Math.Exp(
rnd.Normal() * Math.Sqrt(4.0 / indiv.Genome.Length) +
rnd.Normal() / (2.0 * indiv.Genome.Length));

child.Genome[j] = indiv.Genome[j] + child.Strategy[j] * rnd.»
«Normal();

}
offspring.Add(child);

}
}

foreach (var indiv in offspring) {
double total = 0;
for (int j = 0; j < indiv.Genome.Length; ++j) {

total += indiv.Genome[j] * indiv.Genome[j];
}
indiv.Fitness = -total;

}

population.AddRange(offspring);

population.Sort();

population.RemoveRange(20, population.Count - 20);

PrintSummary(iteration, population);
}

Console.WriteLine("Best: {0} [{1}]", population[0].Fitness, population[0].»
«ToString());

}
}

}

F.2 Evolutionary Programming

esec configuration file for EP

import esec.landscape.integer

SYSTEM_DEFINITION = r'''
FROM random_int(length=8, lowest=0, highest=25) SELECT 100 population
YIELD population

BEGIN iteration
FROM population SELECT offspring USING mutate_delta(step_size=1, per_gene_rate=0.5)
FROM population, offspring SELECT 100 population USING tournament(k=5)

APPENDIX F. COMPARISON CODE 291

YIELD population
END
'''

config = {
'system': { 'definition': SYSTEM_DEFINITION },
'landscape': { 'class': esec.landscape.integer.Nsum, 'parameters': 8 },
'monitor': {

'report': 'brief+local+time_delta',
'summary': 'status+brief+best_genome',
'limits': { 'iterations': 50 }

},
}

ECJ parameter file for EP

parent.0 = ec/ec.params

eval.problem = dower.evaluators.Nsum

state = ec.simple.SimpleEvolutionState
init = ec.simple.SimpleInitializer
finish = ec.simple.SimpleFinisher
exch = ec.simple.SimpleExchanger
eval = ec.simple.SimpleEvaluator
stat = ec.simple.SimpleStatistics
generations = 50
quit-on-run-complete = true
pop = ec.Population
pop.subpops = 1
pop.subpop.0 = ec.Subpopulation
pop.subpop.0.duplicate-retries = 0
pop.subpop.0.species = ec.vector.IntegerVectorSpecies
pop.subpop.0.species.pipe = ec.vector.breed.VectorMutationPipeline
pop.subpop.0.species.pipe.source.0 = ec.select.TournamentSelection
pop.subpop.0.species.pipe.source.0.size = 5

pop.subpop.0.species.fitness = ec.simple.SimpleFitness
pop.subpop.0.species.ind = dower.ep.EPIndividual
pop.subpop.0.species.mutation-bounded = true

pop.subpop.0.species.min-gene = 0
pop.subpop.0.species.max-gene = 25
pop.subpop.0.species.genome-size = 8

breed = ec.simple.SimpleBreeder

pop.subpop.0.species.mutation-step = 1.0
pop.subpop.0.species.mutation-prob = 0.5

pop.subpop.0.size = 100

FakeEALib program for EP

using System;
using FakeEALib;

APPENDIX F. COMPARISON CODE 292

namespace FakeEALib.Experiments {
class EvolutionaryProgramming {

public static void Run() {
var population = new Populations.Integer(8, 0, 25);
population.Select.Add(new Selectors.Clone());
population.Variation.Add(new Operators.MutateDelta(1, 0.5, 1.0));
population.VariationMode = Operators.VariationMode.Expand;
population.Sort.Add(new Sorters.Best());
population.Filter.Add(new Filters.Truncate(100));
population.Evaluator = new Evaluators.Integer.Nsum();

population.CreateRandom(100);

population.Evaluate();
Console.WriteLine("Iter | Best Fit | Mean Fit | Worst Fit");
Console.WriteLine("{0} | {1} | {2} | {3}",

0, population.Best.Fitness, population.MeanFitness, population.Worst.Fitness);

for (int iteration = 1; iteration <= 50; ++iteration) {
population.Step();

population.Evaluate();
Console.WriteLine("{0} | {1} | {2} | {3}",

iteration, population.Best.Fitness, population.MeanFitness, population.»
«Worst.Fitness);

}

Console.WriteLine("Best: {0} [{1}]", population.Best.Fitness, population.Best.»
«ToString());

}
}

}

Full C# program for EP

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace FullAlgorithms {
static class EvolutionaryProgramming {

private class Individual : IComparable<Individual> {
public readonly int[] Genome;
public double Fitness;

public Individual(int length) {
Genome = new int[length];

}

public int CompareTo(Individual other) {
return other.Fitness.CompareTo(Fitness);

}

public override string ToString() {
return String.Join(", ", Genome);

}
}

APPENDIX F. COMPARISON CODE 293

private static void PrintSummary(int iteration, List<Individual> indivs) {
indivs.Sort();
double total = 0;
foreach (var indiv in indivs) {

total += indiv.Fitness;
}
double average = total / indivs.Count;

Console.WriteLine("{0} | {1} | {2} | {3}",
iteration, indivs[0].Fitness, average, indivs[indivs.Count - 1].Fitness);

}

public static void Run() {
var rnd = new Random();
var population = new List<Individual>();

for (int i = 0; i < 100; ++i) {
var indiv = new Individual(8);
for (int j = 0; j < indiv.Genome.Length; ++j) {

indiv.Genome[j] = rnd.Next(0, 26);
}
population.Add(indiv);

}

foreach (var indiv in population) {
int total = 0;
for (int j = 0; j < indiv.Genome.Length; ++j) {

total += indiv.Genome[j];
}
indiv.Fitness = (double)total;

}

Console.WriteLine("Iter | Best Fit | Mean Fit | Worst Fit");
PrintSummary(0, population);

for (int iteration = 1; iteration <= 50; ++iteration) {
var offspring = new List<Individual>();
foreach (var indiv in population) {

var child = new Individual(8);
for (int j = 0; j < indiv.Genome.Length; ++j) {

double prob = rnd.NextDouble();
if (prob < 0.25)

child.Genome[j] = indiv.Genome[j] + 1;
else if (prob < 0.5)

child.Genome[j] = indiv.Genome[j] - 1;
else

child.Genome[j] = indiv.Genome[j];
}
offspring.Add(child);

}

foreach (var indiv in offspring) {
int total = 0;
for (int j = 0; j < indiv.Genome.Length; ++j) {

total += indiv.Genome[j];
}
indiv.Fitness = (double)total;

APPENDIX F. COMPARISON CODE 294

}

population.AddRange(offspring);

population.Sort();

population.RemoveRange(100, population.Count - 100);

PrintSummary(iteration, population);
}

Console.WriteLine("Best: {0} [{1}]", population[0].Fitness, population[0].»
«ToString());

}
}

}

F.3 Genetic Algorithms

esec configuration file for GA

import esec.landscape.real

SYSTEM_DEFINITION = r'''
FROM random_binary(length=64) SELECT 100 population
YIELD population

BEGIN generation
FROM population SELECT 100 parents USING fitness_proportional
FROM parents SELECT population USING crossover(per_pair_rate=0.98), \

mutate_bitflip(per_gene_rate=1/64)
YIELD population

END
'''

config = {
'system': { 'definition': SYSTEM_DEFINITION },
'landscape': { 'class': esec.landscape.binary.OneMax, 'parameters': 64 },
'monitor': {

'report': 'brief+local+time_delta',
'summary': 'status+brief+best_genome',
'limits': { 'iterations': 100 }

},
}

ECJ parameter file for GA

parent.0 = ec/ec.params

eval.problem = dower.evaluators.OneMax

state = ec.simple.SimpleEvolutionState
init = ec.simple.SimpleInitializer
finish = ec.simple.SimpleFinisher
exch = ec.simple.SimpleExchanger
eval = ec.simple.SimpleEvaluator

APPENDIX F. COMPARISON CODE 295

stat = ec.simple.SimpleStatistics
generations = 100
quit-on-run-complete = true
pop = ec.Population
pop.subpops = 1
pop.subpop.0 = ec.Subpopulation
pop.subpop.0.duplicate-retries = 0
pop.subpop.0.species = ec.vector.VectorSpecies
pop.subpop.0.species.pipe = ec.vector.breed.VectorMutationPipeline
pop.subpop.0.species.pipe.source.0 = ec.vector.breed.VectorCrossoverPipeline
pop.subpop.0.species.pipe.source.0.source.0 = ec.select.FitProportionateSelection
pop.subpop.0.species.pipe.source.0.source.1 = same

pop.subpop.0.species.fitness = ec.simple.SimpleFitness
pop.subpop.0.species.ind = ec.vector.BitVectorIndividual

pop.subpop.0.species.genome-size = 64
pop.subpop.0.species.crossover-type = one
pop.subpop.0.species.crossover-likelihood = 0.98
pop.subpop.0.species.mutation-prob = 0.015625

breed = ec.simple.SimpleBreeder

pop.subpop.0.size = 100

FakeEALib program for GA

using System;
using FakeEALib;

namespace FakeEALib.Experiments {
class GeneticAlgorithm {

public static void Run() {
var population = new Populations.Binary(64);
population.Select.Add(new Selectors.FitnessProportional(true, 100));
population.Select.Add(new Selectors.Clone());
population.Evaluator = new Evaluators.Binary.OneMax();
population.Variation.Add(new Operators.Crossover(1, 0.98));
population.Variation.Add(new Operators.MutateBitflip(1.0, 1.0 / 64));
population.VariationMode = Operators.VariationMode.Replace;

population.CreateRandom(100);

population.Evaluate();
Console.WriteLine("Iter | Best Fit | Mean Fit | Worst Fit");
Console.WriteLine("{0} | {1} | {2} | {3}",

0, population.Best.Fitness, population.MeanFitness, population.Worst.Fitness);

for (int iteration = 1; iteration <= 100; ++iteration) {
population.Step();

population.Evaluate();
Console.WriteLine("{0} | {1} | {2} | {3}",

iteration, population.Best.Fitness, population.MeanFitness, population.»
«Worst.Fitness);

}

APPENDIX F. COMPARISON CODE 296

Console.WriteLine("Best: {0} [{1}]", population.Best.Fitness, population.Best.»
«ToString());

}
}

}

Full C# program for GA

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace FullAlgorithms {
static class GeneticAlgorithm {

private class Individual : IComparable<Individual> {
public readonly bool[] Genome;
public double Fitness;

public Individual(int length) {
Genome = new bool[length];

}

public int CompareTo(Individual other) {
return other.Fitness.CompareTo(Fitness);

}

public override string ToString() {
return String.Join(", ", Genome);

}
}

private static void PrintSummary(int iteration, List<Individual> indivs) {
indivs.Sort();
double total = 0;
foreach (var indiv in indivs) {

total += indiv.Fitness;
}
double average = total / indivs.Count;

Console.WriteLine("{0} | {1} | {2} | {3}",
iteration, indivs[0].Fitness, average, indivs[indivs.Count - 1].Fitness);

}

public static void Run() {
var rnd = new Random();
var population = new List<Individual>();

for (int i = 0; i < 100; ++i) {
var indiv = new Individual(64);
for (int j = 0; j < indiv.Genome.Length; ++j) {

indiv.Genome[j] = rnd.NextDouble() < 0.5;
}
population.Add(indiv);

}

foreach (var indiv in population) {
double total = 0;

APPENDIX F. COMPARISON CODE 297

for (int j = 0; j < indiv.Genome.Length; ++j) {
total += indiv.Genome[j] ? 1.0 : 0.0;

}
indiv.Fitness = total;

}

Console.WriteLine("Iter | Best Fit | Mean Fit | Worst Fit");
PrintSummary(0, population);

for (int iteration = 1; iteration <= 100; ++iteration) {
double fitnessTotal = 0;
foreach (var indiv in population) {

fitnessTotal += indiv.Fitness;
}

var parents = new List<Individual>();

while (parents.Count < population.Count) {
var prob = rnd.NextDouble() * fitnessTotal;

foreach (var indiv in population) {
prob -= indiv.Fitness;
if (prob <= 0) {

parents.Add(indiv);
break;

}
}

}

population.Clear();
for (int i = 0; i < parents.Count; i += 2) {

var p1 = parents[i];
var p2 = parents[i + 1];

int cut = rnd.Next(1, p1.Genome.Length - 1);
var c1 = new Individual(p1.Genome.Length);
var c2 = new Individual(p1.Genome.Length);

for (int j = 0; j < p1.Genome.Length; ++j) {
if (j < cut) {

c1.Genome[j] = p1.Genome[j];
c2.Genome[j] = p2.Genome[j];

} else {
c2.Genome[j] = p1.Genome[j];
c1.Genome[j] = p2.Genome[j];

}

if (rnd.NextDouble() < (1.0 / 64.0)) {
c1.Genome[j] = !c1.Genome[j];

}
if (rnd.NextDouble() < (1.0 / 64.0)) {

c2.Genome[j] = !c2.Genome[j];
}

}

population.Add(c1);
population.Add(c2);

}

APPENDIX F. COMPARISON CODE 298

foreach (var indiv in population) {
double total = 0;
for (int j = 0; j < indiv.Genome.Length; ++j) {

total += indiv.Genome[j] ? 1.0 : 0.0;
}
indiv.Fitness = total;

}

PrintSummary(iteration, population);
}

Console.WriteLine("Best: {0} [{1}]", population[0].Fitness, population[0].»
«ToString());

}
}

}

F.4 Differential Evolution

esec configuration file for DE

import esec.landscape.real

def mutate_DE(_source, F=0.8):
for base, p1, p2 in _source:

new_genes = []
for b, x1, x2 in zip(base.genome, p1.genome, p2.genome):

new_genes.append(b + F * (x1 - x2))
yield type(base)(new_genes, base)

SYSTEM_DEFINITION = r'''
FROM random_real(length=3,lowest=-5,highest=5) SELECT 30 population
YIELD population

BEGIN generation
JOIN population, population, population INTO bases USING random_tuples(distinct)
FROM bases SELECT mutants USING mutate_de

JOIN population, mutants INTO parents
FROM parents SELECT trials USING crossover_tuple

JOIN population, trials INTO target_trial_pairs
FROM target_trial_pairs SELECT population USING best_of_tuple

YIELD population
END
'''

config = {
'system': { 'definition': SYSTEM_DEFINITION, 'mutate_de': mutate_DE },
'landscape': { 'class': esec.landscape.real.Sphere, 'parameters': 3 },
'monitor': {

'report': 'brief+local+time_delta',
'summary': 'status+brief+best_genome',
'limits': { 'iterations': 50 }

APPENDIX F. COMPARISON CODE 299

},
}

ECJ parameter file for DE

parent.0 = ec/ec.params

eval.problem = ec.app.ecsuite.ECSuite
eval.problem.type = sphere

state = ec.simple.SimpleEvolutionState
init = ec.simple.SimpleInitializer
finish = ec.simple.SimpleFinisher
exch = ec.simple.SimpleExchanger
eval = ec.de.DEEvaluator
stat = ec.simple.SimpleStatistics
generations = 50
quit-on-run-complete = true
pop = ec.Population
pop.subpops = 1
pop.subpop.0 = ec.Subpopulation
pop.subpop.0.duplicate-retries = 0
pop.subpop.0.species = ec.vector.FloatVectorSpecies

pop.subpop.0.species.fitness = ec.simple.SimpleFitness
pop.subpop.0.species.ind = ec.vector.DoubleVectorIndividual
pop.subpop.0.species.mutation-bounded = true

pop.subpop.0.species.min-gene = -5
pop.subpop.0.species.max-gene = 5
pop.subpop.0.species.genome-size = 3

breed = ec.de.DEBreeder
breed.f = 0.8
breed.cr = 0.5

pop.subpop.0.species.mutation-prob = 0.5

pop.subpop.0.size = 30

public DoubleVectorIndividual createIndividual(EvolutionState state,
int subpop,
int index,
int thread)
{
Individual[] inds = state.population.subpops[subpop].individuals;

DoubleVectorIndividual v = (DoubleVectorIndividual)(inds[index].clone());
do

{
int r0, r1, r2;
do

{
r0 = state.random[thread].nextInt(inds.length);
}

while(r0 == index);
do

{

APPENDIX F. COMPARISON CODE 300

r1 = state.random[thread].nextInt(inds.length);
}

while(r1 == r0 || r1 == index);
do

{
r2 = state.random[thread].nextInt(inds.length);
}

while(r2 == r1 || r2 == r0 || r2 == index);

DoubleVectorIndividual g0 = (DoubleVectorIndividual)(inds[r0]);
DoubleVectorIndividual g1 = (DoubleVectorIndividual)(inds[r1]);
DoubleVectorIndividual g2 = (DoubleVectorIndividual)(inds[r2]);

for(int i = 0; i < v.genome.length; i++)
v.genome[i] = g0.genome[i] + F * (g1.genome[i] - g2.genome[i]);

}
while(!valid(v));

return crossover(state, (DoubleVectorIndividual)(inds[index]), v, thread);
}

public DoubleVectorIndividual crossover(EvolutionState state, DoubleVectorIndividual target, »
«DoubleVectorIndividual child, int thread)
{
int index = state.random[thread].nextInt(child.genome.length);
double val = child.genome[index];

for(int i = 0; i < child.genome.length; i++)
{
if (state.random[thread].nextDouble() < Cr)

child.genome[i] = target.genome[i];
}

child.genome[index] = val;

return child;
}

FakeEALib program for DE

using System;
using System.Collections.Generic;
using FakeEALib;

namespace FakeEALib.Experiments {
class DifferentialEvolution {

public static void Run() {
var population = new Populations.Real(3, -5.0, 5.0);

population.Select.Add(new Selectors.Clone());
population.Variation.Add(new MutateDE(0.8));
population.VariationMode = Operators.VariationMode.Tournament;
population.Evaluator = new Evaluators.Real.Sphere();

population.CreateRandom(30);

population.Evaluate();

APPENDIX F. COMPARISON CODE 301

Console.WriteLine("Iter | Best Fit | Mean Fit | Worst Fit");
Console.WriteLine("{0} | {1} | {2} | {3}",

0, population.Best.Fitness, population.MeanFitness, population.Worst.Fitness);

for (int iteration = 1; iteration <= 50; ++iteration) {
population.Step();

population.Evaluate();
Console.WriteLine("{0} | {1} | {2} | {3}",

iteration, population.Best.Fitness, population.MeanFitness, population.»
«Worst.Fitness);

}

Console.WriteLine("Best: {0} [{1}]", population.Best.Fitness, population.Best.»
«ToString());

}
}

class MutateDE : Operators.IOperator {
public double F { get; private set; }

public MutateDE(double F) {
this.F = F;

}

public void Vary(IList<Populations.IIndividual> source, int index) {
int j = Random.Integer(source.Count);
while (j == index) {

j = Random.Integer(source.Count);
}

int k = Random.Integer(source.Count);
while (k == index || k == j) {

k = Random.Integer(source.Count);
}

var result = (Populations.IRealIndividual)source[index];
var p1 = (Populations.IRealIndividual)source[j];
var p2 = (Populations.IRealIndividual)source[k];

for (int i = 0; i < result.Count; ++i) {
if (Random.Probability(0.5)) {

result[i] += F * (p1[i] - p2[i]);
}

}
}

}
}

Full C# program for DE

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace FullAlgorithms {
static class DifferentialEvolution {

APPENDIX F. COMPARISON CODE 302

private class Individual : IComparable<Individual> {
public readonly double[] Genome;
public double Fitness;

public Individual(int length) {
Genome = new double[length];

}

public int CompareTo(Individual other) {
return other.Fitness.CompareTo(Fitness);

}

public override string ToString() {
return String.Join(", ", Genome);

}
}

private static void PrintSummary(int iteration, List<Individual> indivs) {
indivs.Sort();
double total = 0;
foreach (var indiv in indivs) {

total += indiv.Fitness;
}
double average = total / indivs.Count;

Console.WriteLine("{0} | {1} | {2} | {3}",
iteration, indivs[0].Fitness, average, indivs[indivs.Count - 1].Fitness);

}

public static void Run() {
var rnd = new Random();
var population = new List<Individual>();

for (int i = 0; i < 30; ++i) {
var indiv = new Individual(3);
for (int j = 0; j < indiv.Genome.Length; ++j) {

indiv.Genome[j] = rnd.NextDouble() * 10.0 - 5.0;
}
population.Add(indiv);

}

foreach (var indiv in population) {
double total = 0;
for (int j = 0; j < indiv.Genome.Length; ++j) {

total += indiv.Genome[j] * indiv.Genome[j];
}
indiv.Fitness = -total;

}

Console.WriteLine("Iter | Best Fit | Mean Fit | Worst Fit");
PrintSummary(0, population);

for (int iteration = 1; iteration <= 50; ++iteration) {
for (int i = 0; i < population.Count; ++i) {

int i1 = rnd.Next(population.Count);
while (i1 == i) {

i1 = rnd.Next(population.Count);
}

APPENDIX F. COMPARISON CODE 303

int i2 = rnd.Next(population.Count);
while (i2 == i || i2 == i1) {

i2 = rnd.Next(population.Count);
}

var child = new Individual(population[i].Genome.Length);
var p1 = population[i1].Genome;
var p2 = population[i2].Genome;

for (int j = 0; j < child.Genome.Length; ++j) {
if (rnd.NextDouble() < 0.5) {

child.Genome[j] = population[i].Genome[j] + 0.8 * (p1[j] - p2[j]);
} else {

child.Genome[j] = population[i].Genome[j];
}

}

double total = 0;
for (int j = 0; j < child.Genome.Length; ++j) {

total += child.Genome[j] * child.Genome[j];
}
child.Fitness = -total;

if (child.Fitness > population[i].Fitness) {
population[i] = child;

}
}

PrintSummary(iteration, population);
}

Console.WriteLine("Best: {0} [{1}]", population[0].Fitness, population[0].»
«ToString());

}
}

}

F.5 Genetic Programming
The code for GP was not compared in Chapter 6 because the influence of the library
design outweighs the effect of the method of description. For completeness, the
descriptions for esec and ECJ are included here. Both are complete and describe the
same experiment, though rely heavily on the libraries included with each framework.

esec configuration file for GP

from esec import esdl_eval
from esec.species.tgp import Instruction

SYSTEM_DEFINITION = r'''
FROM random_tgp(instructions,deepest=15,terminals=1) SELECT (size) population
EVAL population USING eval_expression
deepest_result = 7
YIELD population

APPENDIX F. COMPARISON CODE 304

BEGIN generation
FROM population SELECT (size) parents USING fitness_proportional
FROM parents SELECT (size*0.9) p1, (size*0.02) p2, p3

FROM p1 SELECT o1 USING crossover_one(deepest_result)
FROM p2 SELECT o2 USING mutate_random(deepest_result)

FROM o1, o2, p3 SELECT (size) population
YIELD population

END
'''

@esdl_eval
def eval_expression(individual):

from esec.context import rand
error_sum = 0.0
for _ in range(20):

x = rand.random() * 2.0 - 1.0
expected = x**3 + x**2 + x + 1
actual = individual.evaluate(individual, terminals=[x])
error_sum += (actual - expected) ** 2

return 1.0 / (1 + error_sum)

config = {
'system': {

'definition': SYSTEM_DEFINITION,
'instructions': [

Instruction(lambda a, b: a+b, param_count=2, name='+'),
Instruction(lambda a, b: a-b, param_count=2, name='-'),
Instruction(lambda a, b: a*b, param_count=2, name='*'),
Instruction(lambda a, b: (a/b) if b else 0.0, param_count=2, name='/'),

],
'size': 50

},
'monitor': {

'report': 'brief+local+time_delta',
'summary': 'status+brief+best_phenome',
'limits': { 'iterations': 50 }

},
}

ECJ parameter file for GP

parent.0 = ec/ec.params

eval.problem = dower.gp.Regression2
eval.problem.data = ec.app.regression.RegressionData
eval.problem.size = 20

state = ec.simple.SimpleEvolutionState
init = ec.gp.GPInitializer
finish = ec.simple.SimpleFinisher
exch = ec.simple.SimpleExchanger
eval = ec.simple.SimpleEvaluator
stat = ec.gp.koza.KozaStatistics
generations = 50
pop = ec.Population

APPENDIX F. COMPARISON CODE 305

pop.subpops = 1
pop.subpop.0 = ec.Subpopulation
pop.subpop.0.size = 50
pop.subpop.0.species = ec.gp.GPSpecies
pop.subpop.0.species.fitness = ec.gp.koza.KozaFitness
pop.subpop.0.species.ind = ec.gp.GPIndividual
pop.subpop.0.duplicate-retries = 0
pop.subpop.0.species.ind.numtrees = 1
pop.subpop.0.species.ind.tree.0 = ec.gp.GPTree
pop.subpop.0.species.ind.tree.0.tc = tc0

pop.subpop.0.species.pipe = ec.breed.MultiBreedingPipeline
pop.subpop.0.species.pipe.generate-max = false
pop.subpop.0.species.pipe.num-sources = 3
pop.subpop.0.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline
pop.subpop.0.species.pipe.source.0.prob = 0.9
pop.subpop.0.species.pipe.source.1 = ec.gp.koza.MutationPipeline
pop.subpop.0.species.pipe.source.1.prob = 0.02
pop.subpop.0.species.pipe.source.2 = ec.breed.ReproductionPipeline
pop.subpop.0.species.pipe.source.2.prob = 0.08

breed = ec.simple.SimpleBreeder
breed.reproduce.source.0 = ec.select.TournamentSelection

gp.koza.xover.source.0 = ec.select.TournamentSelection
gp.koza.xover.source.1 = same
gp.koza.xover.ns.0 = ec.gp.koza.KozaNodeSelector
gp.koza.xover.ns.1 = same
gp.koza.xover.maxdepth = 17
gp.koza.xover.tries = 1

gp.koza.mutate.source.0 = ec.select.TournamentSelection
gp.koza.mutate.ns.0 = ec.gp.koza.KozaNodeSelector
gp.koza.mutate.build.0 = ec.gp.koza.GrowBuilder
gp.koza.mutate.maxdepth = 17
gp.koza.mutate.tries = 1

select.tournament.size = 7

gp.koza.grow.min-depth = 15
gp.koza.grow.max-depth = 15

gp.problem.stack = ec.gp.ADFStack
gp.adf-stack.context = ec.gp.ADFContext

gp.koza.ns.terminals = 0.1
gp.koza.ns.nonterminals = 0.9
gp.koza.ns.root = 0.0

gp.fs.size = 1
gp.fs.0 = ec.gp.GPFunctionSet
gp.fs.0.name = f0
gp.fs.0.size = 5
gp.fs.0.func.0 = ec.app.regression.func.X
gp.fs.0.func.0.nc = nc0
gp.fs.0.func.1 = ec.app.regression.func.Add
gp.fs.0.func.1.nc = nc2
gp.fs.0.func.2 = ec.app.regression.func.Mul

APPENDIX F. COMPARISON CODE 306

gp.fs.0.func.2.nc = nc2
gp.fs.0.func.3 = ec.app.regression.func.Sub
gp.fs.0.func.3.nc = nc2
gp.fs.0.func.4 = ec.app.regression.func.Div
gp.fs.0.func.4.nc = nc2

gp.type.a.size = 1
gp.type.a.0.name = nil

gp.tc.size = 1
gp.tc.0 = ec.gp.GPTreeConstraints
gp.tc.0.name = tc0
gp.tc.0.fset = f0
gp.tc.0.returns = nil

gp.tc.0.init = ec.gp.koza.FullBuilder
gp.koza.full.min-depth = 7
gp.koza.full.max-depth = 7

gp.nc.size = 3

gp.nc.0 = ec.gp.GPNodeConstraints
gp.nc.0.name = nc0
gp.nc.0.returns = nil
gp.nc.0.size = 0

gp.nc.1 = ec.gp.GPNodeConstraints
gp.nc.1.name = nc1
gp.nc.1.returns = nil
gp.nc.1.size = 1
gp.nc.1.child.0 = nil

gp.nc.2 = ec.gp.GPNodeConstraints
gp.nc.2.name = nc2
gp.nc.2.returns = nil
gp.nc.2.size = 2
gp.nc.2.child.0 = nil
gp.nc.2.child.1 = nil

F.6 Steady State Genetic Algorithms

esec configuration file for SSGA

import esec.landscape.real

SYSTEM_DEFINITION = r'''
FROM random_binary(length=64) SELECT (100) population
YIELD population

BEGIN generation_equivalent
REPEAT 100

FROM population SELECT 2 parents, rest \
USING binary_tournament(without_replacement)

FROM parents SELECT offspring \
USING crossover(per_pair_rate=0.98, two_children), \

mutate_bitflip(per_gene_rate=1/64)

APPENDIX F. COMPARISON CODE 307

FROM offspring, rest SELECT population
END
YIELD population

END
'''

config = {
'system': { 'definition': SYSTEM_DEFINITION },
'landscape': { 'class': esec.landscape.binary.OneMax, 'parameters': 64 },
'monitor': {

'report': 'brief+local+time_delta',
'summary': 'status+brief+best_genome',
'limits': { 'iterations': 100 }

},
}

ECJ parameter file for SSGA

parent.0 = ec/ec.params

eval.problem = dower.evaluators.OneMax

state = ec.steadystate.SteadyStateEvolutionState
init = ec.simple.SimpleInitializer
finish = ec.simple.SimpleFinisher
exch = ec.simple.SimpleExchanger
eval = ec.steadystate.SteadyStateEvaluator
stat = ec.simple.SimpleStatistics
breed = ec.steadystate.SteadyStateBreeder
generations = 100
quit-on-run-complete = true
pop = ec.Population
pop.subpops = 1
pop.subpop.0 = ec.Subpopulation
pop.subpop.0.duplicate-retries = 0
pop.subpop.0.species = ec.vector.VectorSpecies
pop.subpop.0.species.pipe = ec.vector.breed.VectorMutationPipeline
pop.subpop.0.species.pipe.source.0 = ec.vector.breed.VectorCrossoverPipeline
pop.subpop.0.species.pipe.source.0.source.0 = ec.select.TournamentSelection
pop.subpop.0.species.pipe.source.0.source.1 = same

select.tournament.size = 2

pop.subpop.0.species.fitness = ec.simple.SimpleFitness
pop.subpop.0.species.ind = ec.vector.BitVectorIndividual

pop.subpop.0.species.genome-size = 64
pop.subpop.0.species.crossover-type = one
pop.subpop.0.species.crossover-likelihood = 0.98
pop.subpop.0.species.mutation-prob = 0.015625

steady.deselector.0 = ec.select.TournamentSelection
steady.deselector.0.size = 1
steady.deselector.0.pick-worst = true

pop.subpop.0.size = 100

APPENDIX F. COMPARISON CODE 308

FakeEALib program for SSGA

using System;
using System.Linq;
using FakeEALib;

namespace FakeEALib.Experiments {
class SteadyStateGeneticAlgorithms {

public static void Run() {
var population = new Populations.Binary(64);
var parents = new Populations.Binary(64);
population.Evaluator = new Evaluators.Binary.OneMax();
population.Sort.Add(new Sorters.FitnessProportional());
parents.Select.Add(new Selectors.Clone());
parents.Variation.Add(new Operators.Crossover(1, 0.98));
parents.Variation.Add(new Operators.MutateBitflip(1.0, 1.0 / 64));
parents.VariationMode = Operators.VariationMode.Replace;

population.CreateRandom(100);

population.Evaluate();
Console.WriteLine("Iter | Best Fit | Mean Fit | Worst Fit");
Console.WriteLine("{0} | {1} | {2} | {3}",

0, population.Best.Fitness, population.MeanFitness, population.Worst.Fitness);

for (int iteration = 1; iteration <= 50; ++iteration) {
for (int step = 0; step < 100; ++step) {

population.Step();
parents.Clear();
parents.AddRange(population.Take(2));
parents.Step();
population.RemoveAt(0);
population.RemoveAt(0);
population.AddRange(parents);
population.Evaluate();

}

Console.WriteLine("{0} | {1} | {2} | {3}",
iteration, population.Best.Fitness, population.MeanFitness, population.»

«Worst.Fitness);
}

Console.WriteLine("Best: {0} [{1}]", population.Best.Fitness, population.Best.»
«ToString());

}
}

}

Full C# program for SSGA

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace FullAlgorithms {
static class SteadyStateGeneticAlgorithm {

private class Individual : IComparable<Individual> {

APPENDIX F. COMPARISON CODE 309

public readonly bool[] Genome;
public double Fitness;

public Individual(int length) {
Genome = new bool[length];

}

public int CompareTo(Individual other) {
return other.Fitness.CompareTo(Fitness);

}

public override string ToString() {
return String.Join(", ", Genome);

}
}

private static void PrintSummary(int iteration, List<Individual> indivs) {
indivs.Sort();
double total = 0;
foreach (var indiv in indivs) {

total += indiv.Fitness;
}
double average = total / indivs.Count;

Console.WriteLine("{0} | {1} | {2} | {3}",
iteration, indivs[0].Fitness, average, indivs[indivs.Count - 1].Fitness);

}

public static void Run() {
var rnd = new Random();
var population = new List<Individual>();

for (int i = 0; i < 100; ++i) {
var indiv = new Individual(64);
for (int j = 0; j < indiv.Genome.Length; ++j) {

indiv.Genome[j] = rnd.NextDouble() < 0.5;
}
population.Add(indiv);

}

foreach (var indiv in population) {
double total = 0;
for (int j = 0; j < indiv.Genome.Length; ++j) {

total += indiv.Genome[j] ? 1.0 : 0.0;
}
indiv.Fitness = total;

}

Console.WriteLine("Iter | Best Fit | Mean Fit | Worst Fit");
PrintSummary(0, population);

for (int iteration = 1; iteration <= 100; ++iteration) {
double fitnessTotal = 0;
foreach (var indiv in population) {

fitnessTotal += indiv.Fitness;
}

for (int repeat = 0; repeat < 100; ++repeat) {

APPENDIX F. COMPARISON CODE 310

var parents = new List<Individual>();

while (parents.Count < 2) {
var prob = rnd.NextDouble() * fitnessTotal;

for (int i = 0; i < population.Count; ++i) {
prob -= population[i].Fitness;
if (prob <= 0) {

parents.Add(population[i]);
fitnessTotal -= population[i].Fitness;
population.RemoveAt(i);
break;

}
}

}

var p1 = parents[0];
var p2 = parents[1];

int cut = rnd.Next(1, p1.Genome.Length - 1);
var c1 = new Individual(p1.Genome.Length);
var c2 = new Individual(p1.Genome.Length);

for (int j = 0; j < p1.Genome.Length; ++j) {
if (j < cut) {

c1.Genome[j] = p1.Genome[j];
c2.Genome[j] = p2.Genome[j];

} else {
c2.Genome[j] = p1.Genome[j];
c1.Genome[j] = p2.Genome[j];

}

if (rnd.NextDouble() < (1.0 / 64.0)) {
c1.Genome[j] = !c1.Genome[j];

}
if (rnd.NextDouble() < (1.0 / 64.0)) {

c2.Genome[j] = !c2.Genome[j];
}

}

double total = 0;
for (int j = 0; j < c1.Genome.Length; ++j) {

total += c1.Genome[j] ? 1.0 : 0.0;
}
c1.Fitness = total;
total = 0;
for (int j = 0; j < c2.Genome.Length; ++j) {

total += c2.Genome[j] ? 1.0 : 0.0;
}
c2.Fitness = total;

population.Add(c1);
population.Add(c2);
population.Sort();
fitnessTotal += c1.Fitness + c2.Fitness;

}

PrintSummary(iteration, population);

APPENDIX F. COMPARISON CODE 311

}

Console.WriteLine("Best: {0} [{1}]", population[0].Fitness, population[0].»
«ToString());

}
}

}

F.7 Particle Swarm Optimisation

esec configuration file for PSO

import esec.landscape.real

def random_particle(length=10, low_limit=0, high_limit=1):
from esec.context import rand, context
for indiv in context['random_real'](length=length, lowest=low_limit, highest=high_limit):

indiv.strategy = [0] * int(length)
yield indiv

def update_velocity(_source, global_best=None, low_limit=-100, high_limit=100,
c1=2, c2=2):

from esec.context import rand
g_best = global_best[0]
for indiv, p_best in _source:

new_velocity = []
for (x, v, p_i, p_g) in zip(indiv, indiv.strategy, p_best, g_best):

r1 = rand.random()
r2 = rand.random()

new_v = v + c1*r1*(p_i-x) + c2*r2*(p_g-x)

if new_v < low_limit:
new_velocity.append(low_limit)

elif high_limit < new_v:
new_velocity.append(high_limit)

else:
new_velocity.append(new_v)

yield type(indiv)(indiv.genome, indiv, strategy=new_velocity)

def update_position(_source, low_limit=-100, high_limit=100, bounce=False):
for indiv in _source:

new_position = []
new_velocity = []
for x, v in zip(indiv.genome, indiv.strategy):

new_x = x + v
new_v = v
if bounce:

if new_x < low_limit:
new_x = 2 * low_limit - new_x
new_v = -v

elif high_limit < new_x:
new_x = 2 * high_limit - new_x
new_v = -v

new_position.append(new_x)

APPENDIX F. COMPARISON CODE 312

new_velocity.append(new_v)

yield type(indiv)(new_position, indiv, strategy=new_velocity)

SYSTEM_DEFINITION = r'''
FROM random_particle(length=2, low_limit=-5, high_limit=5) SELECT 50 swarm
FROM swarm SELECT p_bests
YIELD swarm

BEGIN iteration
FROM swarm SELECT 1 g_best USING best
JOIN swarm, p_bests INTO particles_with_pbest
FROM particles_with_pbest SELECT swarm USING \

update_velocity(global_best=g_best, low_limit=-100, high_limit=100), \
update_position(low_limit=-5, high_limit=5, bounce)

YIELD swarm
END
'''

config = {
'system': {

'definition': SYSTEM_DEFINITION,
'random_particle': random_particle,
'update_velocity': update_velocity,
'update_position': update_position,

},
'landscape': { 'class': esec.landscape.real.Sphere, 'parameters': 2 },
'monitor': {

'report': 'brief+local+time_delta',
'primary': 'swarm',
'summary': 'status+brief+best_genome',
'limits': { 'iterations': 50 }

},
}

ECJ parameter file for PSO

parent.0 = ec/ec.params

eval.problem = ec.app.ecsuite.ECSuite
eval.problem.type = sphere

state = ec.simple.SimpleEvolutionState
init = ec.simple.SimpleInitializer
finish = ec.simple.SimpleFinisher
exch = ec.simple.SimpleExchanger
breed = dower.pso.PSOBreeder
eval = ec.simple.SimpleEvaluator
stat = ec.simple.SimpleStatistics
generations = 50
quit-on-run-complete = true
pop = ec.Population
pop.subpops = 1
pop.subpop.0 = ec.pso.PSOSubpopulation
pop.subpop.0.duplicate-retries = 2
pop.subpop.0.species = ec.vector.FloatVectorSpecies
pop.subpop.0.species.fitness = ec.simple.SimpleFitness
#pop.subpop.0.species.pipe = ec.vector.breed.VectorMutationPipeline

APPENDIX F. COMPARISON CODE 313

#pop.subpop.0.species.pipe.source.0 = ec.vector.breed.VectorCrossoverPipeline
#pop.subpop.0.species.pipe.source.0.source.0 = ec.select.TournamentSelection
#pop.subpop.0.species.pipe.source.0.source.1 = same

pop.subpop.0.species.ind = ec.vector.DoubleVectorIndividual

pop.subpop.0.species.min-gene = -5
pop.subpop.0.species.max-gene = 5
pop.subpop.0.species.genome-size = 2

#select.tournament.size = 2
#pop.subpop.0.species.mutation-prob = 0.005
#pop.subpop.0.species.crossover-type = one

pop.subpop.0.size = 50
#pop.subpop.0.neighborhood-size = 50
pop.subpop.0.clamp = true
pop.subpop.0.initial-velocity-scale = 0
#pop.subpop.0.velocity-multiplier = 1

package dower.pso;

import ec.Breeder;
import ec.EvolutionState;
import ec.Population;
import ec.pso.PSOSubpopulation;
import ec.util.Parameter;
import ec.vector.DoubleVectorIndividual;

public class PSOBreeder extends Breeder
{
public void setup(EvolutionState state, Parameter base)

{
// intentionally empty
}

public Population breedPopulation(EvolutionState state)
{
PSOSubpopulation subpop = (PSOSubpopulation) state.population.subpops[0];

// update bests
assignPersonalBests(subpop);
assignGlobalBest(subpop);

// make a temporary copy of locations so we can modify the current location on the fly
DoubleVectorIndividual[] tempClone = new DoubleVectorIndividual[subpop.individuals.»

«length];
System.arraycopy(subpop.individuals, 0, tempClone, 0, subpop.individuals.length);

// update particles
for (int i = 0; i < subpop.individuals.length; i++)

{
DoubleVectorIndividual ind = (DoubleVectorIndividual)subpop.individuals[i];
DoubleVectorIndividual prevInd = (DoubleVectorIndividual)subpop.»

«previousIndividuals[i];
// the individual's personal best
DoubleVectorIndividual pBest = (DoubleVectorIndividual)subpop.personalBests[i];

APPENDIX F. COMPARISON CODE 314

// the individuals's global best
DoubleVectorIndividual gBest = (DoubleVectorIndividual)subpop.globalBest;

// calculate update for each dimension in the genome
for (int j = 0; j < ind.genomeLength(); j++)

{
double velocity = ind.genome[j] - prevInd.genome[j];
double pDelta = pBest.genome[j] - ind.genome[j]; // »

«difference to personal best
double gDelta = gBest.genome[j] - ind.genome[j]; // »

«difference to global best
double pWeight = state.random[0].nextDouble(); // »

«weight for personal best
double gWeight = state.random[0].nextDouble(); // »

«weight for global best
double newDelta = (velocity + 2.0*pWeight*pDelta + 2.0*gWeight*gDelta);

if (newDelta < -100.0)
newDelta = -100.0;

else if (newDelta > 100.0)
newDelta = 100.0;

ind.genome[j] += newDelta;
}

if (subpop.clampRange)
ind.clamp();

}

// update previous locations
subpop.previousIndividuals = tempClone;

return state.population;
}

public void assignPersonalBests(PSOSubpopulation subpop)
{
for (int i = 0; i < subpop.personalBests.length; i++)

if ((subpop.personalBests[i] == null) || subpop.individuals[i].fitness.betterThan»
«(subpop.personalBests[i].fitness))

subpop.personalBests[i] = (DoubleVectorIndividual)subpop.individuals[i].clone»
«();

}

public void assignGlobalBest(PSOSubpopulation subpop)
{
DoubleVectorIndividual globalBest = subpop.globalBest;
for (int i = 0; i < subpop.individuals.length; i++)

{
DoubleVectorIndividual ind = (DoubleVectorIndividual)subpop.individuals[i];
if ((globalBest == null) || ind.fitness.betterThan(globalBest.fitness))

globalBest = ind;
}

if (globalBest != subpop.globalBest)
subpop.globalBest = (DoubleVectorIndividual)globalBest.clone();

}
}

APPENDIX F. COMPARISON CODE 315

FakeEALib program for PSO

using System;
using System.Collections.Generic;
using FakeEALib;

namespace FakeEALib.Experiments {
class ParticleSwarmOptimisation {

public static void Run() {
var swarm = new Populations.RealWithStrategy(2, -5.0, 5.0, 0.0, 0.0);
var pBests = new Populations.RealWithStrategy(2, -5.0, 5.0, 0.0, 0.0);
swarm.Evaluator = new Evaluators.Real.Sphere();

swarm.Variation.Add(new UpdateVelocity(-100.0, 100.0, pBests));
swarm.Variation.Add(new UpdatePosition(-5.0, 5.0, true));
swarm.VariationMode = Operators.VariationMode.Replace;

swarm.CreateRandom(50);
swarm.Evaluate();
pBests.AddClonedRange(swarm);

swarm.Evaluate();
Console.WriteLine("Iter | Best Fit | Mean Fit | Worst Fit");
Console.WriteLine("{0} | {1} | {2} | {3}",

0, swarm.Best.Fitness, swarm.MeanFitness, swarm.Worst.Fitness);

for (int iteration = 1; iteration <= 50; ++iteration) {
swarm.Step();
swarm.Evaluate();

for (int i = 0; i < swarm.Count; ++i) {
if (swarm[i].Fitness > pBests[i].Fitness) {

pBests[i] = swarm[i].Clone();
}

}

Console.WriteLine("{0} | {1} | {2} | {3}",
iteration, swarm.Best.Fitness, swarm.MeanFitness, swarm.Worst.Fitness);

}

Console.WriteLine("Best: {0} [{1}]", swarm.Best.Fitness, swarm.Best.ToString());
}

}

class UpdatePosition : Operators.IOperator {
public double LowLimit { get; private set; }
public double HighLimit { get; private set; }
public bool Bounce { get; private set; }

public UpdatePosition(double lowLimit, double highLimit, bool bounce) {
LowLimit = lowLimit;
HighLimit = highLimit;
Bounce = bounce;

}

public void Vary(IList<Populations.IIndividual> source, int index) {
var indiv = (Populations.IRealIndividualWithStrategy)source[index];

for (int i = 0; i < indiv.Count; ++i) {

APPENDIX F. COMPARISON CODE 316

indiv[i] += indiv.Strategy[i];
if (Bounce && indiv[i] < LowLimit) {

indiv[i] = 2 * LowLimit - indiv[i];
indiv.Strategy[i] = -indiv.Strategy[i];

} else if (Bounce && indiv[i] > HighLimit) {
indiv[i] = 2 * HighLimit - indiv[i];
indiv.Strategy[i] = -indiv.Strategy[i];

}
}

}
}

class UpdateVelocity : Operators.IOperator {
public double LowLimit { get; private set; }
public double HighLimit { get; private set; }
public Populations.IPopulation PersonalBests { get; private set; }

public UpdateVelocity(double lowLimit, double highLimit, Populations.IPopulation »
«pBests) {

LowLimit = lowLimit;
HighLimit = highLimit;
PersonalBests = pBests;

}

public void Vary(IList<Populations.IIndividual> source, int index) {
var indiv = (Populations.IRealIndividualWithStrategy)source[index];
var pBest = (Populations.IRealIndividualWithStrategy)PersonalBests[index];
var gBest = (Populations.IRealIndividualWithStrategy)PersonalBests.Best;

for (int i = 0; i < indiv.Count; ++i) {
indiv.Strategy[i] += 2 * Random.Uniform(0, 1) * (pBest[i] - indiv[i]) +

2 * Random.Uniform(0, 1) * (gBest[i] - indiv[i]);
if (indiv.Strategy[i] < LowLimit) {

indiv.Strategy[i] = LowLimit;
} else if (indiv.Strategy[i] > HighLimit) {

indiv.Strategy[i] = HighLimit;
}

}
}

}
}

Full C# program for PSO

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace FullAlgorithms {
static class ParticleSwarmOptimisation {

private class Individual : IComparable<Individual> {
public readonly double[] Genome;
public readonly double[] Velocity;
public double Fitness;

public Individual(int length) {
Genome = new double[length];

APPENDIX F. COMPARISON CODE 317

Velocity = new double[length];
}

public int CompareTo(Individual other) {
return other.Fitness.CompareTo(Fitness);

}

public override string ToString() {
return String.Join(", ", Genome);

}

public Individual Clone() {
var indiv = new Individual(Genome.Length);
Genome.CopyTo(indiv.Genome, 0);
Velocity.CopyTo(indiv.Velocity, 0);
indiv.Fitness = Fitness;
return indiv;

}
}

private static void PrintSummary(int iteration, List<Individual> indivs) {
indivs.Sort();
double total = 0;
foreach (var indiv in indivs) {

total += indiv.Fitness;
}
double average = total / indivs.Count;

Console.WriteLine("{0} | {1} | {2} | {3}",
iteration, indivs[0].Fitness, average, indivs[indivs.Count - 1].Fitness);

}

public static void Run() {
var rnd = new Random();
var swarm = new List<Individual>();
var p_bests = new List<Individual>();

for (int i = 0; i < 50; ++i) {
var indiv = new Individual(2);
for (int j = 0; j < indiv.Genome.Length; ++j) {

indiv.Genome[j] = rnd.NextDouble() * 10.0 - 5.0;
indiv.Velocity[j] = 0.0;

}
swarm.Add(indiv);
p_bests.Add(indiv);

}

foreach (var indiv in swarm) {
double total = 0;
for (int j = 0; j < indiv.Genome.Length; ++j) {

total += indiv.Genome[j] * indiv.Genome[j];
}
indiv.Fitness = -total;

}

Console.WriteLine("Iter | Best Fit | Mean Fit | Worst Fit");
PrintSummary(0, swarm);

APPENDIX F. COMPARISON CODE 318

for (int iteration = 1; iteration <= 50; ++iteration) {
var g_best = swarm[0].Clone();

for (int i = 0; i < swarm.Count; ++i) {
var pos = swarm[i].Genome;
var vel = swarm[i].Velocity;
var p_i = p_bests[i].Genome;
var p_g = g_best.Genome;
for (int j = 0; j < pos.Length; ++j) {

double newV = vel[j] + 2.0 * rnd.NextDouble() * (p_i[j] - pos[j]) +
2.0 * rnd.NextDouble() * (p_g[j] - pos[j]);

if (newV < -100) {
newV = -100;

} else if (newV > 100) {
newV = 100;

}

pos[j] += newV;

if (pos[j] < -5) {
pos[j] = -10 - pos[j];
newV = -newV;

} else if (pos[j] > 5) {
pos[j] = 10 - pos[j];
newV = -newV;

}

vel[j] = newV;
}

}

for (int i = 0; i < swarm.Count; ++i) {
var indiv = swarm[i];
double total = 0;
for (int j = 0; j < indiv.Genome.Length; ++j) {

total += indiv.Genome[j] * indiv.Genome[j];
}
indiv.Fitness = -total;

if (indiv.Fitness > p_bests[i].Fitness) {
p_bests[i] = indiv.Clone();

}
}

PrintSummary(iteration, swarm);
}

Console.WriteLine("Best: {0} [{1}]", swarm[0].Fitness, swarm[0].ToString());
}

}
}

319

Glossary

blackboard
A software architecture using a central storage repository that is freely
accessible from any component.

block (ESDL)
A sequence of statements representing one iteration of the algorithm.

C++ AMP
C++ Accelerated Massive Parallelism

credit assignment
Determining the fitness of individuals that were evaluated as components of
a joined individual.

CSV
Comma Separated Value. Typically refers to the file format used for storing
tables as plain text.

DE
Differential Evolution

DSL
Domain-Specific Language. A language of limited expressiveness that
provides greater fluency for a specific field or subject.

EA
Evolutionary Algorithm

EC
Evolutionary Computation

EP
Evolutionary Programming

ES
Evolution Strategies

ESDL
Evolutionary System Definition Language

evaluator (ESDL)
The calculation that determines the fitness of an individual.

GLOSSARY 320

fitness
The suitability of a set of input values for the problem to which they are
applied.

framework
A program that may be extended by a developer. See also, library.

GA
Genetic Algorithms

GPU
Graphical Processing Unit

group (ESDL)
A list containing a subset of the individuals existing in a given search space.

GUI
Graphical User Interface

HTML
HyperText Markup Language

individual (ESDL)
A single set of input values for a problem.

joined individual (ESDL)
An association between multiple individuals, conceptualised as a distinct
individual.

library
A collection of code that can be used to create new programs. See also,
framework.

merge (ESDL)
Combine multiple groups into a single group containing all the individuals.
Equivalent to concatenation of lists.

MIMD
Multiple-Instruction Multiple-Data. Most computers with multiple
processors or cores use this model.

OOP
Object-Oriented Programming

operator (ESDL)
A composable element providing joining, filtering, selection or variation of
groups.

partition (ESDL)
Separate a group by taking groups of individuals from the start.

problem
A mapping from input values to output values, representing the system or
function that is to be optimised or ‘solved.’

GLOSSARY 321

SIMD
Single-Instruction Multiple-Data. Most GPUs are based on SIMD processors.

species
A class of individuals, typically specifying the representation and valid
operations.

SQL
Structured Query Language

stream (ESDL)
A temporary sequence of individuals used to pass them between operators.

XML
eXtensible Markup Language

	Abstract
	Acknowledgements
	Declaration
	Contents
	List of Figures
	List of Tables
	List of Code Listings
	Introduction
	Motivation
	Research Statement
	Contributions
	Structure
	Publications

	Unification
	Originating Algorithms
	Evolution Strategies
	Evolutionary Programming
	Genetic Algorithms
	Other Algorithms

	Algorithm Cliques
	Segregation in Research
	Segregation in Design
	Segregation in Implementation

	‘Inventing’ algorithms for optimisation
	What are we looking for?
	Where do we look?
	Is this an Evolutionary Algorithm?

	Chapter Summary

	Model
	Defining what to solve
	Problems
	Evaluators

	How to ‘have’ a population
	Individuals
	Groups
	Streams

	How to ‘improve’ a population
	Operators
	Merging
	Partitioning
	Joining
	Filtering
	Selection
	Variation
	Termination

	How to share an algorithm
	Example Algorithm Descriptions
	Evolution Strategies
	Evolutionary Programming
	Genetic Algorithms
	Differential Evolution
	Genetic Programming
	Steady-State Genetic Algorithms
	Particle Swarm Optimisation

	Chapter Summary

	ESDL
	Reusable Software
	Domain-Specific Languages
	Code Reuse in Evolutionary Computation

	Describing algorithms with ESDL
	Basic Conventions
	Composing Algorithms
	Operators and Parameters
	Evaluating Individuals

	Structuring ESDL systems
	Algorithm Iteration
	Statistics Collection and Termination

	Example ESDL Systems
	Evolution Strategies
	Evolutionary Programming
	Genetic Algorithms
	Differential Evolution
	Genetic Programming
	Steady-State Genetic Algorithms
	Particle Swarm Optimisation

	Chapter Summary

	Execution
	Evolutionary Algorithm Software
	Interpreting ESDL Systems
	Memory Model
	Sequence Model
	Extensibility Model
	Parsing and Compiling
	Summary

	Comparison with Existing Software
	Chapter Summary

	Application
	A Hypothetical Workflow
	Story 1
	Story 2

	Applying the ESDL approach
	Designing Algorithms
	Sharing Algorithms
	Summary

	Executing ESDL systems
	Major Components
	Memory Model
	Sequence Model
	Extensibility Model
	Configuration Files
	Summary

	Code Comparison
	esec Configurations
	ECJ Parameter Files
	FakeEALib Programs
	C# Programs
	Results

	Chapter Summary

	Conclusions
	Research Goals
	Contributions
	Limitations
	Qualitative Assessment
	Informal Language Model
	Volumetric Analysis

	Future Work
	Tool Support
	Distributed Implementations
	Language Extensions
	Theoretical Formalism
	Usability Study

	Final Words

	Bibliography
	Standard Library
	Overview
	Selectors
	Repeated
	Repeat Each
	Best
	Worst
	Uniform Random
	Uniform Shuffle
	Rank Proportional
	Rank-based Stochastic Uniform Sampling
	Tournament
	Fitness Proportional
	Fitness-based Stochastic Uniform Sampling

	Filters
	Unique
	Duplicates
	Legal
	Illegal

	Joiners
	Tuples
	Random Tuples

	Variation Operators
	Mutate Random
	Mutate Insert
	Mutate Delete
	Crossover
	Crossover Different
	Crossover Uniform
	From Tuple
	Best of Tuple
	Crossover Tuple

	Binary-valued Operators
	Representation
	Random Binary Generator
	Binary True and False Generators
	Mutate Bit Flip
	Mutate Inversion
	Mutate Gap Inversion

	Real-valued Operators
	Representation
	Random Real Generator
	Real Value, Low, Mid and High Generators
	Clamp
	Mutate Delta
	Mutate Gaussian
	Crossover Average

	Integer-valued Operators
	Representation
	Random Integer Generator
	Integer Value, Low, Mid and High Generators
	Clamp
	Mutate Delta
	Mutate Gaussian
	Crossover Average

	ESDL Grammar
	esdlc Architecture
	Overview
	Lexer
	Parser
	System class
	FluentSystem class
	AstSystem class
	Validator class

	Code Generation
	Emitters
	esec emitter

	Summary

	Parallel Execution
	Background
	C++ AMP
	Execution Model
	Memory Model
	Sequence Model
	Extensibility Model
	Command-line Options

	cppamp emitter

	esec Architecture
	Overview
	Python
	Architecture
	Experiments
	Species
	Monitors
	Landscapes

	Use
	Configuration Dictionaries
	run.py Script
	Embedding esec

	Extensibility
	Summary

	Comparison Code
	Evolution Strategies
	Evolutionary Programming
	Genetic Algorithms
	Differential Evolution
	Genetic Programming
	Steady State Genetic Algorithms
	Particle Swarm Optimisation

	Glossary

