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Abstract

Evolutionary Systems Definition Language (ESDL) is a domain-specific language for search
algorithms based on iterative improvements to a solution population. Particle Swarm Optimisation
(PSO) is a population-based search algorithm based on models of swarm behaviour. This report
describes PSO using ESDL and validates the performance against earlier published PSO work.

1 Introduction

1.1 ESDL

Evolutionary System Definition Language (ESDL) is a domain-specific language for describing the
flow of evolutionary algorithms (EAs) [1]. It defines a system as groups of individuals and the process
followed to create new groups from existing ones. Groups are created by selecting and modifying
individuals from existing groups or from generators.

ESDL does not specify the implementation or behaviour of specific operations: it requires an
underlying framework to provide the functionality. For this report, esec1 is the supporting framework.

1.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a search algorithm introduced by Kennedy and Eberhart [2]
that uses a population of individuals “flying” within the solution space. The velocity of each individual
is determined by the best location found by itself and the best location found by any member of its
neighbourhood. Velocity and position are updated each generation, taking the place of a traditional
EA crossover and mutation scheme.

The velocity calculation is

𝑣𝑖𝑑 = 𝑤 · 𝑣𝑖𝑑 + 𝑐1𝑟1 (𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2𝑟2 (𝑝𝑔𝑑 − 𝑥𝑖𝑑) (1)

where 𝑥𝑖𝑑 and 𝑣𝑖𝑑 are the position and velocity of particle 𝑖 in dimension 𝑑, 𝑝𝑖𝑑 is the best position
seen by particle 𝑖, 𝑝𝑔𝑑 is the best position seen by any neighbour, 𝑤 is an inertial weight, 𝑐1 and 𝑐2
are positive acceleration constants and 𝑟1 and 𝑟2 are random numbers in the range [0, 1] taken from
a uniform distribution each time the equation is evaluated.

The position update is

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑 (2)

where 𝑥𝑖𝑑 and 𝑣𝑖𝑑 are defined for (1).
*Contact via http://stevedower.id.au/
1Available online at http://code.google.com/p/esec. The plugin and configuration files used in this report are also

available from here.
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Velocity values are typically limited to the same range as valid position values to ensure that even
at the maximum velocity, a particle is unable to move over the entire area in a single step. Clerc
proposed the use of constriction factors as an alternative to velocity clamping [3, 4]. The resultant
velocity in (1) is multiplied by a constant

𝐾 =
2⃒⃒⃒

2− 𝜙−
√︀

𝜙2 − 4𝜙
⃒⃒⃒ (3)

where 𝜙 = 𝑐1 + 𝑐2 and is greater than four. Alternatively, 𝐾 may be multiplied through 𝑤, 𝑐1 and 𝑐2
of (1) to provide adjusted values for these parameters.

2 System Definition

ESDL can be used to define PSO applied to an 𝑛-dimensional function as shown in Listing 1. In
this definition, particles use a global neighbourhood of every other particle. The externally defined
elements are random_pso, update_velocity and update_position. All other elements are provided
by esec; descriptions of their behaviour are included below for completeness. The problem landscape
is specified externally. Changing the problem landscape may require modification of the numeric values
in line 1.

Listing 1: ESDL definition of the PSO algorithm

1 FROM random_pso(length=10, lowest=-100 , highest=100) \
2 SELECT (size) population
3

4 FROM population SELECT 1 global_best USING best
5 FROM population SELECT (size) p_bests
6 YIELD population
7

8 BEGIN GENERATION
9 JOIN population , p_bests INTO pairs USING tuples

10

11 FROM pairs SELECT population USING \
12 update_velocity(global_best=global_best , w=1.0, c1=2.0, c2=2.0), \
13 update_position
14

15 JOIN population , p_bests INTO pairs USING tuples
16 FROM pairs SELECT p_bests USING best_of_tuple
17

18 FROM population , global_best SELECT 1 global_best USING best
19

20 YIELD global_best , population
21 END GENERATION

The random_pso generator produces individuals with uniformly distributed positions and velocities
within the provided bounds. The global best is initially determined on line 4 and updated each
generation on line 18 by selecting the single best individual from the current population and the previous
best. Each individual’s personal best is determined by selecting the best out of each individual and its
previous personal best, performed using the JOIN–INTO instruction on line 15 and the best_of_tuple
selector on line 16.

Behaviour for the update_velocity operator is specified in Listing 2. It is applied to a tuple
containing each particle, its best previous location – created by the JOIN–INTO instruction on line 9 of
Listing 1 – and the current best individual, global_best.
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Listing 2: Pseudocode for update_velocity

function update_velocity(source , global_best , 𝑤, 𝑐1, 𝑐2):
use 𝑤 = 1.0, 𝑐1 = 2.0, and 𝑐2 = 2.0 if not provided
𝑃𝑔 =first (only) individual in global_best

for each (𝑋𝑖 and 𝑉𝑖) and 𝑃𝑖 in source:
for each 𝑥𝑖, 𝑣𝑖, 𝑝𝑖 and 𝑝𝑔 in 𝑋𝑖, 𝑉𝑖, 𝑃𝑖, and 𝑃𝑔:

𝑣𝑖 = 𝑤𝑣𝑖 + 𝑐1𝑟1 (𝑝𝑖 − 𝑥𝑖) + 𝑐2𝑟2 (𝑝𝑔 − 𝑥𝑖)

yield 𝑋𝑖 and updated 𝑉𝑖

Positions of individuals are updated by update_position as specified in Listing 3.

Listing 3: Pseudocode for update_position

function update_position(source):
for each 𝑋𝑖 and 𝑉𝑖 in source:

for each 𝑥𝑖 and 𝑣𝑖 in 𝑋𝑖 and 𝑉𝑖:
𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖

yield new 𝑋𝑖

Bounds enforcement on velocity and position vectors is not shown here, but may be easily added to
Listing 2 or Listing 3 as appropriate. The PSO plugin for esec supports position wrapping, clamping
and bouncing and velocity clamping if desired.

3 Validation

While the ESDL description has well-defined behaviour, an empirical analysis is used to verify that
this behaviour matches existing PSO publications.

As a benchmark, we used the methodology and results published in [5]. Five problem landscapes
were selected: Sphere, Rosenbrock, Rastrigin, Griewangk and Schaffer’s f6. (Details are provided in
Appendix A.) Each problem was run with two parameter sets and three population sizes, resulting in
30 configurations.

The first parameter set, “A”, was found using a combination of theoretical analysis and experimen-
tation [5]. Set “A” uses 𝑤 = 0.6 and 𝑐1 = 𝑐2 = 1.7 as values to equation (1). Parameter set “B” uses
equation (3) with 𝑐1 = 𝑐2 = 2.05 to find 𝐾 = 0.7298. Distributing 𝐾 through (1) gives 𝑤 = 0.7298
and 𝑐1 = 𝑐2 = 1.496, which are different to the values used in [5]. For consistency with [5], we used
𝑤 = 0.7290 and 𝑐1 = 𝑐2 = 1.494.

Each problem and parameter set was run with 15, 30 and 60 individuals in the swarm. Positions
and velocities were randomly initialised within the maximum position range for each problem and
neither position nor velocity was constrained during the run. Each configuration was run 20 times and
the average (mean) number of generations recorded. Generations were capped at 10 000 after which
the run was deemed unsuccessful and terminated. Unsuccessful searches were not included in averages.

Average generation count and success rate for the full set of configurations from [5] and the ESDL
implementation are shown in Table 1. Averages are shown to four significant figures and success rates
as shown as a fraction, zero indicating no successes and one indicating that every run succeeded.
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Table 1: Comparison of each configuration

Mean Generations Success Rate
Problem Set Pop. Benchmark ESDL Benchmark ESDL

Sphere

A
15 769.0 802.0 0.40 0.15
30 344.0 323.7 1.00 1.00
60 252.0 258.1 1.00 1.00

B
15 764.0 721.8 1.00 1.00
30 395.0 396.1 1.00 1.00
60 314.0 294.0 1.00 1.00

Rosenbrock

A
15 531.0 695.3 0.50 0.15
30 614.0 1004 1.00 1.00
60 337.0 250.1 1.00 0.95

B
15 1430 1332 1.00 1.00
30 900.0 467.4 1.00 1.00
60 611.0 375.7 1.00 1.00

Rastrigin

A
15 172.0 229.6 0.35 0.70
30 140.0 129.3 0.90 0.80
60 122.0 105.4 0.95 0.95

B
15 299.0 245.8 0.80 0.90
30 182.0 155.2 0.95 0.90
60 166.0 152.3 1.00 0.95

Griewangk

A
15 689.0 526.3 0.35 0.45
30 313.0 282.8 0.90 0.95
60 266.0 224.1 0.95 0.95

B
15 755.0 553.3 0.60 0.55
30 365.0 363.7 0.90 1.00
60 287.0 264.9 1.00 1.00

Schaffer’s f6

A
15 583.0 568.5 0.45 0.40
30 161.0 195.0 0.75 0.70
60 169.0 301.2 0.90 0.85

B
15 1203 1478 0.40 0.30
30 350.0 438.0 0.60 0.70
60 319.0 283.0 0.95 0.95
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Figure 1: Average generation count for each configuration
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Figure 2: Success rate for each configuration
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Figures 1 and 2 show that the ESDL-based implementation produces similar results to those pub-
lished in [5]. In those cases the performance observed in the ESDL implementation is significantly
different (such as for Rosenbrock), the small number of experiments conducted for each configuration
is suspected to be the cause. As a number of repeats of these configurations produced significantly dif-
ferent results, no particular set being any more valid, we present one set of results here and recommend
the use of a larger sample for proper statistical analysis.

Another observation of the validation data is that small populations with parameter set “A” ex-
hibited low success rates. With one exception, each run with a population of 15 had less than a fifty
per cent likelihood of finding a solution. Since unsuccessful experiments were not included in each of
the mean generation counts, the averages tend to be biased lower, which is obvious in the results for
Rosenbrock against parameter set “A”. This is an artefact of the algorithm and has no bearing on the
validity of our results.

From the results presented, it can be clearly demonstrated that the ESDL implementation matches
the algorithm described in [5].

4 Summary

This report provides a description of the Particle Swarm Optimisation algorithm using ESDL. The
fundamental algorithm is shown concisely in ESDL with the velocity and position update methods
specified using pseudocode.

The ESDL description was used with esec to produce a working implementation, which was vali-
dated against five 𝑛-dimensional problem landscapes. Results show that the ESDL implementation is
consistent with existing published results.
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A Test Functions

All of these functions are minimisation problems with the global minimum 𝑓𝑚𝑖𝑛 = 0 at 𝑥* = 0. The
value of 𝑓𝑔𝑜𝑎𝑙 is the largest fitness value that represents a successful run.

The Sphere function is a simple sum of each parameter squared:

𝑓 (𝑥) =
𝑛∑︁

𝑖=1

𝑥2𝑖 (4)

In this report, 𝑛 = 30, 𝑥 ∈ [−100, 100] and 𝑓𝑔𝑜𝑎𝑙 = 0.01.
Rosenbrock’s valley is a well-known classic optimisation problem [6] with many alternative titles,

such as De Jong’s Function 2 (F2), Rosenbrock’s “saddle” and the “Banana” function. The function
is continuous and unimodal, though the non-convex surface gradient can be deceptive to some search
methods. Originally a two-dimensional function, it has a variety of generalisations to 𝑛-dimensions.
The version used in this report is:

𝑓 (𝑥) =
𝑛−1∑︁
𝑖=1

(︁
100

(︀
𝑥𝑖+1 − 𝑥2𝑖

)︀2
+ (1− 𝑥𝑖)

2
)︁

(5)

In this report, 𝑛 = 30, 𝑥 ∈ [−30, 30] and 𝑓𝑔𝑜𝑎𝑙 = 100.
Rastrigin is a multimodal and deceptive surface, similar to the Sphere but with an added cosine

term to create multiple local minima:

𝑓 (𝑥) =

𝑛∑︁
𝑖=1

(︀
𝑥2𝑖 − 10cos (2𝜋𝑥𝑖) + 10

)︀
(6)

In this report, 𝑛 = 30, 𝑥 ∈ [−5.12, 5.12] and 𝑓𝑔𝑜𝑎𝑙 = 100.
Griewangk (sometimes referred to as Griewank) is based on adding a modulation term to the Sphere

function. At a large scale, the surface appears smooth, while at small scales close to the optimum it
becomes very deceptive.

𝑓 (𝑥) =
1

4000

𝑛∑︁
𝑖=1

𝑥2𝑖 −
∏︁𝑛

𝑖=1
cos

(︂
𝑥𝑖√
𝑖

)︂
+ 1 (7)

In this report, 𝑛 = 30, 𝑥 ∈ [−600, 600] and 𝑓𝑔𝑜𝑎𝑙 = 0.1.
Schaffer’s f6 function is a two-dimensional landscape that is primarily flat, but becomes deceptive

close to the global minimum:

𝑓 (𝑥) = 0.5 +
sin2

√︀
𝑥21 + 𝑥22 − 0.5(︀

1 + 0.001
(︀
𝑥21 + 𝑥22

)︀)︀2 (8)

In this report, 𝑛 = 2, 𝑥 ∈ [−100, 100] and 𝑓𝑔𝑜𝑎𝑙 = 10−5. (The version of this equation given in [5]
appears to be an inverted form, with a global maximum 𝑓𝑚𝑎𝑥 = 1 at 𝑥* = 0. However, the other
parameters and results suggest that the minimisation landscape was used.)
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B esec Configuration

Listing 4 shows the configuration used for the Sphere experiment with parameter set A and a population
of 30. The other configurations were slight variations of the one shown; the ESDL definition was not
changed.

Listings 5 and 6 show the implementation of an individual and species for PSO, which allow better
integration with esec and simpler reuse. The update_velocity and update_position methods shown
in listings 7 and 8 respectively are based on the pseudocode in listings 2 and 3.

(The code shown has been simplified and comments removed from the full code available online at
http://code.google.com/p/esec/.)

Listing 4: The esec configuration used for the Sphere landscape

from esec.landscape import real
import plugins.PSO

config = {
'landscape ': {

'class': real.Sphere ,
'size': { 'exact': 30 }

},
'system ': {

'definition ': r'''
FROM random_pso(length =(n), lowest=(-x_max), highest =( x_max )) \

SELECT (size) population
FROM population SELECT 1 global_best USING best_only
FROM population SELECT (size) p_bests
YIELD population

BEGIN GENERATION
JOIN population , p_bests INTO pairs USING tuples

FROM pairs SELECT population USING \
update_velocity(global_best=global_best , w=w, c1=c1, c2=c2), \
update_position

JOIN population , p_bests INTO pairs USING tuples
FROM pairs SELECT p_bests USING best_of_tuple

FROM population , global_best SELECT 1 global_best USING best_only

YIELD global_best , population
END GENERATION ''',

'size': 30,
'n': 30, 'x_max': 100,
'w': 0.6, 'c1': 1.7, 'c2': 1.7

},
'monitor ': {

'report ': 'brief+local+time_delta ',
'summary ': 'status+brief+best_genome ',
'limits ': {

'generations ': 10000,
'fitness ': 0.01,

}
},

}
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Listing 5: Python implementation of the PSOIndividual class

class PSOIndividual(RealIndividual):
# Actually a real -valued individual , but we'll store velocity values
# in the vector as well. The phenome and velocities properties can
# sort it out.

@property
def genome_string(self):

'''Returns a string representation of the genes of this individual.'''
return '[' + ', '.join('%g (%+g)' % i \

for i in zip(self.phenome , self.velocities)) + ']'

@property
def phenome(self):

'''Returns the position values for this individual.'''
return self.genome[:len(self.genome)//2]

@property
def position_bounds(self):

'''Returns the bounds for positions for this individual.'''
i = len(self.genome) // 2
return (self.bounds[0][:i], self.bounds[1][:i])

@property
def velocities(self):

'''Returns the velocity values for this individual.'''
return self.genome[len(self.genome)//2:]

@property
def velocity_bounds(self):

'''Returns the bounds for velocities for this individual.'''
i = len(self.genome) // 2
return (self.bounds[0][i:], self.bounds[1][i:])

@property
def phenome_string(self):

'''Returns a string representation of the phenome of this
individual.'''
return '[' + ', '.join('%.3f' % p for p in self.phenome) + ']'
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Listing 6: Python implementation of the PSOSpecies class and init_random

class PSOSpecies(RealSpecies):
name = 'pso'

def __init__(self , cfg , eval_default):
super(PSOSpecies , self).__init__(cfg , eval_default)
# Make some names public within the ESDL definition
self.public_context = {

'random_pso ': self.init_random ,
'update_velocity ': update_velocity ,
'update_position ': update_position ,

}

def init_random(self , length=2, lowest=-1.0, highest=1.0, \
zero_velocity=False , template=None):

frand = rand.random

# Specify bounds , but don't necessarily apply them later
bounds = ([lowest]*length , [highest]*length)

if zero_velocity:
# Initialise velocity to zero
for indiv in self._init(length , None , None , \

lowest , highest , bounds , template , \
lambda l, h, _: frand()*(h-l)+l):

yield PSOIndividual(indiv.genome+[0]*length , self , indiv.bounds)
else:

# Initialise velocity to within the same range as the
# position.
for indiv in self._init(length * 2, None , None , \

lowest , highest , bounds , template ,
lambda l, h, _: frand()*(h-l)+l):

yield PSOIndividual(indiv.genome , self , indiv.bounds)

Listing 7: Python implementation of update_velocity (based on Listing 2)

def update_velocity(source , global_best , w=1.0, c1=2.0, c2=2.0):
global_best = global_best[0]

frand = rand.random

for joined_individual in source:
indiv , indiv_best = joined_individual[:]

new_velocity = list(indiv.velocities)
for i, (pos , vel , pbest_pos , gbest_pos) in \

enumerate(zip(indiv , new_velocity , indiv_best , global_best)):

new_vel = w*vel + c1*frand()*(pbest_pos-pos) + \
c2*frand()*(gbest_pos-pos)

new_velocity[i] = new_vel

yield PSOIndividual(indiv.phenome + new_velocity , indiv)
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Listing 8: Python implementation of update_position (based on Listing 3)

def update_position(source):
for indiv in source:

new_position = list(indiv)
velocity = list(indiv.velocities)

for i, (pos , vel) in enumerate(zip(new_position , velocity)):
new_position[i] = pos + vel

yield PSOIndividual(new_position + velocity , indiv)
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