
Evolutionary System Definition Language

Steve Dower* Clinton Woodward

Swinburne University of Technology
Melbourne, Australia
November 10, 2010

Abstract

A large proportion of publications in evolutionary computation describe algorithm specialisa-
tion and experimentation. These algorithms are variously described using text, tables, flowcharts,
functions or pseudocode. However, ambiguity is a common artefact that can limit the efficiency
of communication. Evolutionary System Definition Language (ESDL) is a conceptual model and
language for describing evolutionary systems efficiently and with reduced ambiguity, including sys-
tems with multiple populations and adaptive parameters. ESDL can be machine-interpreted to run
systems without requiring a hand-coded implementation.

1 Introduction

Of the myriad of approaches to computational intelligence, evolutionary computation (EC) forms a
significant proportion [1–3]. The defining feature of an evolutionary algorithm (EA) is a solution pop-
ulation that, over time, improves as the result of competitive forces. The majority of these algorithms
derive from the neo-Darwinian paradigm of biological evolution, notably in the use of concepts and
terminology of genotypes, phenotypes and fitness-affected survival. Each step in the evolution of the
population is the result of applying a selection and reproduction algorithm to the preceding population.

The generality of the biologically inspired EA model has resulted in a vast number of publications
presenting improved or optimised algorithms. These algorithms are variously described using text and
tables (as in [4–6]), flowcharts (as in [6–8]), pseudocode (as in [8]) and functions (as in [9]). However,
these descriptions are often sufficiently ambiguous that independent reproduction of experiments is
not possible without a significant number of correct assumptions. Eiben [10], Peer [11], Ventura [12],
Rummler [13] and many others have identified the need for algorithms to be completely shareable
and verifiable. Early 20th century philosophers Cohen and Nagel [14] stated, “scientific method ... is
concerned with verification”. However, much of the published literature in EC consists of new empirical
evidence and little verification of earlier results.

An attempt at reproducing an existing algorithm was made by Painter in [15], where he implemented
Grammatical Evolution (GE) using Python based on the original published specification and source
code. However, his results showed a much higher rate of premature convergence than that found by
the original authors, O’Neill and Ryan [16]. Painter attributed his lack of success to incomplete access
to the original authors’ source code, particularly that it “omitted the genetic algorithm portion” and
“did not compile on its own,” and cited two other similarly failing attempts to implement GE.

Some systems (for example, that shown in Excerpt 2) are not easily implementable in existing
evolutionary computation frameworks such as EO,1 ECJ2 or CILib.3 While these frameworks provide

*Contact via http://stevedower.id.au/
1An evolutionary computation framework for C++, online at http://eodev.sourceforge.net/
2A research evolutionary computation system for Java, online at http://cs.gmu.edu/~eclab/projects/ecj/
3A component based framework for developing Computational Intelligence software in Java, online at http://www.

cilib.net/

1

http://stevedower.id.au/
http://eodev.sourceforge.net/
http://cs.gmu.edu/~eclab/projects/ecj/
http://www.cilib.net/
http://www.cilib.net/

TR/CIS/2010/1 1 INTRODUCTION

flexible object models that generally support complex systems, the effort of translating an algorithm
description into very specific program code or definitions (often bearing little apparent relation to the
original) is high. A likely cause of this high cost is the lack of a common structure for describing
the parameters and processes underlying the evolutionary system, coupled with the subjectivity of
aesthetic presentation. While it is reasonable to assume that authors select a presentation pleasing to
them, it is unlikely that the choice is suitable for everyone.

De Jong [9] provided explicit but verbose pseudocode as an introduction to evolutionary systems
(Excerpt 1). In their own introductory text, Eiben and Smith [6] summarised their textual descriptions
of breeding processes into tables specifying the operation to use at each stage of a predefined sequence
(see Table 1).

Authors such as Koza [7] and O’Neill [4] constructed sets of parameters – “tableaux” – as descriptions
of various problems and applicable breeding parameters (for example, that shown in Table 2). While
sufficient for clearly defining the problem space, these tables do not describe the structure of the
breeding algorithm; both authors use text and an occasional flowchart for this purpose. Price et al. [8]
describe the processes behind Differential Evolution (DE) using text, flowcharts, diagrams (such as
Figure 1), pseudocode and various mathematical notations. Implementers of DE must reconcile no less
than five separate definitions into actual code.

Each of these examples describes particular algorithms in styles that have a learning curve; to
understand the algorithm, the reader must first understand the description. Any misunderstanding
in either the form of expression or the algorithm itself may result in an incorrect implementation,
which, however unfairly, reflects poorly on the original description. An oft-suggested solution is for
all researchers to standardise on a single software library, typically the library being promoted by the
author. (For examples, see [17–20], as well as those cited previously.) Standardising particular software
implementations is very rarely done, largely due to difficulties with portability, licensing and personal
opinions. Typically, interchange formats and communication protocols are selected instead. For ex-
ample, there is no “standard” internet browser: there are standards that describe how a (conforming)
browser should communicate, interpret and present information.

An alternative approach, presented here, is to create a domain-specific language that unambiguously
specifies the breeding procedure of an evolutionary system without enforcing a particular software
framework. Such a description language should support parameterised selection, recombination and
mutation operators, dynamic problem spaces, adaptive parameters and distributed populations to be at
least capable of expressing current algorithms without hindering the expression of future developments.
The use of such a standard form of description would allow researchers to communicate their intent
clearly when describing algorithms and the learning curve is diminished or removed.

VHDL4 is an example of a mature and successful domain-specific language from the digital elec-
tronics field [21]. While originally intended as a description language for interoperability, the creation
of compilers and synthesisers has transformed it into a development language. However, VHDL also
illustrates the necessity of supporting domain knowledge among practitioners; for all its precision,
VHDL can be close to impenetrable for those without any experience in digital electronics.

Previous domain-specific modelling languages for evolutionary computation include Evolutionary
Algorithm Modeling Language (EAML) [22] and Programmable Parameter Control for Evolutionary
Algorithms (PPCEA) [23], neither of which has achieved wide use. EAML represented the breed-
ing process of evolutionary systems primarily for communication and interoperation between distinct
frameworks [24]. PPCEA is a scripting language that provides parameter control of an algorithm,
without emphasising the structure of the algorithm itself.

Once a description language for the EC domain is developed, a reasonable next step is to create
software that can interpret the description language and perform the algorithm directly, removing
the manual translation step and changing the “description” language into a “definition” language (as
occurred with VHDL). The benefits of an automatic translation from a description language to an
executable program are most significant during design, where rapid modification and evaluation is

4VHDL: VHSIC hardware description language; VHSIC: very high speed integrated circuit

2

TR/CIS/2010/1 2 LANGUAGE

important. This simplifies independent confirmation of results.
This paper is structured as follows: In Section 2, the conceptual model and syntax of Evolutionary

System Definition Language (ESDL) is described. Section 3 contains a set of example system definitions
to illustrate the suitability and flexibility of ESDL. Section 4 discusses the design rationale and potential
future directions of ESDL.

2 Language

2.1 Overview

ESDL is a domain-specific modelling language for describing the flow of an EA. It does this by defining
the initialisation, combination and breeding aspects of an evolutionary system. It does not attempt to
define specifics of any particular operator, representation or problem; ESDL depends on an underlying
evolutionary computation framework to provide problem landscapes and operator implementations.

The central conceptual entities of ESDL are individuals and groups. Each individual represents a
single solution or part of a solution to a problem being addressed. The only required characteristic of
individuals is that they are orderable, that is, two individuals can be compared and determined to be
more, less or equally suitable (“fit”) than each other.

Groups are collections of multiple individuals and are either persistent or transient. For example,
groups representing the primary populations are generally persistent, while intermediate selections
of individuals are considered transient. ESDL does not explicitly distinguish between persistent and
transient groups; the distinction represents the intent and use of a particular group.

An individual may be a member of multiple groups simultaneously and appear multiple times in a
single group. Hence, the groups that claim an individual do not define the identity of that individual;
an individual cannot say that it “belongs” exclusively to a particular generation because the same
individual may also have “belonged” to an earlier generation (for example, through elitism) as well as
being included in one or more transient groups (for example, as a potential replacement).

2.2 Basic Operations

The primary operation specified by ESDL is selection. Using the FROM–SELECT statement,5 individuals
are taken from other groups and filtered, combined or otherwise modified to form a new group.

Listing 1: Example of FROM–SELECT in ESDL

FROM population SELECT 100 offspring USING tournament(k=2), random_mutate

The statement shown in Listing 1 creates a group called offspring containing one hundred in-
dividuals derived from the population group. Individuals are selected using a binary tournament
process and then cloned and mutated. It is the underlying implementation that provides the actual
behaviour of tournament and random_mutate; ESDL’s only requirement is that they must accept
named parameters (where appropriate), such as the probability of mutating a gene, or, as in Listing 1,
the tournament size 𝑘.

New individuals are created using generators that provide an infinite number of individuals. Proper-
ties such as genome length and gene bounds are passed to the generator and associated with/retained
by each individual so that they do not need to be respecified for each operator. For example, the
random_binary generator shown in Listing 2 is provided by the underlying implementation and the
length of each individual is specified as a parameter.

5While bearing some syntactical similarity to SQL, ESDL is quite different; direct comparison to SQL is not relevant
and generally unhelpful.

3

TR/CIS/2010/1 2 LANGUAGE

Listing 2: Example of population creation using a generator in ESDL

FROM random_binary(length=6) SELECT 50 population

Specifying multiple source or destination groups allows for merging and partitioning. Line 1 of
Listing 3 splits the population group into three groups: ten individuals into parentsA, five into
parentsB and the remainder into offspring. Line 2 merges the three groups back into a single group
named everyone.

Listing 3: Example of group partitioning and merging in ESDL

1 FROM pop SELECT 10 parentsA , 5 parentsB , offspring
2 FROM parentsA , parentsB , offspring SELECT everyone

Note that the order of selection has not been specified on line 1 of Listing 3. The selection method
in this case is to take individuals from groups in the same order they were selected into the groups (first-
in-first-out). If ordering is important, it is necessary to specify a filter, such as tournament selection.
Selection operators with replacement produce unbounded groups that require the destination to have
a size specified, such as parentsA and parentsB. If a size were also specified for offspring it would
be possible to use selection with replacement.

Fitness evaluations are performed by evaluators, which are not directly coupled to individuals and
their representations. The underlying implementation determines whether the fitness evaluation occurs
immediately or lazily;6 ESDL only requires that the fitness is available when needed. In many cases, a
default evaluator may be specified separately from the system definition, allowing the definition to omit
details of the evaluator. However, systems that use parameterised evaluators, multi-step evaluations
or perform credit-assignment require explicit specification.

Dynamic environments must recalculate fitness values each time the environment updates. The
EVALUATE command (which may be abbreviated to EVAL) instructs all individuals in the given group or
groups to recalculate their fitness using a specified evaluator. Listing 4 is an example of a time-based
dynamic landscape to evaluate the entire population.

Listing 4: Example of a dynamic evaluator in ESDL

t = t + 1
EVAL population USING landscape(time=t)

Our current work has shown that many breeding systems are fully describable using only FROM–
SELECT statements (as shown in listings 12–15 and 17). However, complex mutation or coevolution
systems can require more complicated functionality than FROM–SELECT can achieve. For example, DE
uses three different individuals from the same group to perform a single mutation operation [8]. This
collation of individuals may be expressed in ESDL using the JOIN statement, as shown in Listing 5.
(An alternative implementation may choose to handle the collation within the mutate_DE operation.)

Listing 5: Example of DE-style collation in ESDL

JOIN popA , popA , popA INTO parents USING random_tuples(unique=True)
FROM parents SELECT offspring USING mutate_DE

The parents group in Listing 5 will contain a set of joined individuals. Joined individuals are func-
tionally identical to regular individuals: their “species”7 specifies that they consist of other individuals,
similar to a numeric vector that consists of scalar values.

Coevolutionary systems [1] (both cooperative and competitive) and specific credit-assignment
6“Lazy” evaluation retains the calculation required but defers it until the result is needed. If the result is never needed,

the calculation never occurs and no computation time is wasted.
7There are various definitions of species within the EC field, and while important to the underlying implementation

and species-specific operators, ESDL does not require a strict definition.

4

TR/CIS/2010/1 2 LANGUAGE

schemes are realisable using JOIN with specially designed evaluators. Joined individuals can be as-
signed a fitness evaluator, as with separate individuals, however the default evaluator mentioned earlier
does not automatically apply. The example of Listing 6 uses Potter and De Jong’s CCGA-1 model [25]
of joining each individual of one group with the best individual of a second group, then transferring
part or all of the fitness value from joined to the original individuals in popA. (The complete example
is shown in excerpts 3–5 and Listing 18.)

Listing 6: A two-step evaluator example using joined individuals

JOIN popA , popB INTO joined USING each_with_best
EVALUATE joined USING rastrigin
EVALUATE popA USING assign(source=joined)

The first EVALUATE statement assumes the existence of a rastrigin evaluator that expects joined
individuals rather than a single individual. The second EVALUATE statement specifies the assign
evaluator with each individual in the joined group to allocate the fitness to the original individual in
popA. ESDL is agnostic to the type or structure of fitness values and hence credit assignment evaluators
are algorithm or problem specific.

2.3 System Structure

A system definition starts with an initialisation block where any persistent populations are created
and, if necessary, assigned an evaluator. This operation is specified separately to per-generational
breeding to allow for systems where a meaningful initial evaluation must be specified explicitly. The
first two lines of Listing 7 make up the initialisation block. To specify a non-default evaluator for the
initial population, an EVALUATE statement would be inserted between lines 1 and 2.

The generation block is enclosed by BEGIN GENERATION and END GENERATION statements. The code
within the generation block executes once per generation (or generation-equivalent)8 and represents
the main breeding process of an algorithm. The REPEAT and END REPEAT statements (lines 5 and 16)
simplify gap models [26,27] that run multiple times per generation-equivalent.

Since ESDL does not distinguish between transient and persistent groups, the YIELD command is
necessary to identify groups that are relevant in terms of statistics and termination conditions. The
YIELD statement passes entire groups to an external monitoring system.9 The group that contains the
final solution (in Listing 7, population) should always be yielded, but some other groups may also
be relevant. For example, statistics collected from the offspring and replacee groups may show
improvements in each breeding operation; many algorithms perform parameter adjustment based on
this type of information.

Listing 7 contains a number of YIELD statements, returning the initial population (line 2), the
updated population each generation-equivalent (line 18) and the offspring and replacee groups each
time they are updated (line 13).

8“Generation-equivalent” is the preferred term in some works dealing with steady-state algorithms.
9YIELD behaves like the yield statement in the Python and C# programming languages. The specified groups are

returned without interrupting the code sequence, similar to the way that a print statement displays a value and continues
and unlike a return statement, which exits a function.

5

TR/CIS/2010/1 2 LANGUAGE

Listing 7: A complete steady-state EA system in ESDL

1 FROM random_real SELECT 500 population
2 YIELD population
3

4 BEGIN GENERATION
5 REPEAT 500
6 FROM population SELECT 2 parents USING binary_tournament
7 FROM parents SELECT offspring USING crossover(per_pair_rate=0.9), \
8 mutate(per_gene_rate=0.01)
9

10 FROM offspring SELECT 1 replacer USING best
11 FROM population SELECT 1 replacee , rest USING uniform_random_no_replacement
12

13 YIELD offspring , replacee
14

15 FROM replacer , rest SELECT population
16 END REPEAT
17

18 YIELD population
19 END GENERATION

2.4 Adaptive Systems

In order to support flexible parameterisation and adaptive systems, ESDL provides a basic vari-
able/arithmetic system. Variables are created automatically by assignment and may be used through-
out the system definition (as shown in Listing 8). Basic arithmetic (addition, subtraction, multi-
plication and division) and calls to external functions are the minimum requirements of an ESDL
implementation. Complicated control-flow structures should be written as external functions.

Listing 8: Examples of assignment in ESDL

1 size = 100
2 FROM random_int SELECT (size) population
3 FROM population SELECT (size/10) parents
4

5 mutate_rate = mutate_rate * adapt_rate(population)

Surrounding variables or expressions by parentheses (as in lines 2 and 3 of Listing 8) is suggested
to distinguish numeric values from group names. Listings 19 and 20 show a complete example using
adaptive mutation and external functions.

Assigning a group to a variable creates an alias. In Listing 9 this results in both parents and
destination_group referring to the same group. Assigning another group to an existing alias changes
the alias, rather than modifying the group.10

Listing 9: Example of group aliasing in ESDL

destination_group = parents
FROM population SELECT 2 destination_group
FROM parents SELECT 2 offspring

2.5 Syntactical Elements

ESDL is case-insensitive with respect to keywords, group names, variable names and parameter names.
Structure is determined by BEGIN, REPEAT and END statements, rather than punctuation or spacing.

10FROM–SELECT must be used to change a group’s composition.

6

TR/CIS/2010/1 2 LANGUAGE

Lines beginning with or containing a hash symbol (#), double-slash (//) or semicolon (;) are
comments which are ignored from the comment start until the end of the line. The backslash character
(\) acts as a line-continuation marker, merging the current line with the following. Comments on a
line ending with a backslash must be placed after the backslash character.

Lines beginning with a backtick (`, also called a grave accent) are assumed to contain non-standard
functionality. For example, an implementation producing Python code may choose to pass all lines
beginning with a backtick to the interpreter unmodified, such as the example in Listing 10, which
allows native Python features and libraries to be readily accessed.

Listing 10: Using backticked lines for Python code

`from random import gauss
`mutate_rate *= gauss(0.5, 0.2)
FROM parents SELECT offspring USING mutate(per_gene_rate=mutate_rate)

Alternatively, an implementation may accept optimisation or compilation hints, as shown in List-
ing 11.

Listing 11: Using backticked lines as directives

`group-type(parents): transient
FROM population SELECT 10 parents USING random

Group, variable and parameter names may contain any alphanumeric character or underscores and
must begin with an alphabet character. Names beginning with an underscore are reserved for use by
the underlying implementation, for example, if extra named variables are generated when compiling
to another language.

Some terms are reserved and may not be used as the names of groups or variables. These are
BEGIN, END, EVAL, EVALUATE, FROM, INTO, JOIN, REPEAT, SELECT, USING and YIELD.

These words may be used as parameter names, since in that context they are contained by paren-
theses. GENERATION is not a reserved word, as it only has meaning when used immediately after a
BEGIN or END statement.

7

TR/CIS/2010/1 3 EXAMPLES

3 Examples

Each example presented in this section consists of a published description of a system, followed by a
description of the same system using ESDL. Some examples highlight the comparative simplicity or
comprehensibility of ESDL, while others represent canonical or regularly cited models.

While comments may be included in ESDL definitions, these examples avoid their use in order to
better demonstrate the readability of ESDL without supporting text. In some examples, Python code
or pseudocode is used to describe a particular operator. This demonstrates the abstraction of operator
implementations, one of the strengths of ESDL.

3.1 EV Algorithm

De Jong [9] described the simplistic EV algorithm as an introduction to evolutionary systems. Excerpt 1
and Listing 12 show his elaborated EV algorithm in its original form and as an ESDL definition,
respectively. The variable 𝑀 , common to both descriptions, requires a numeric value before the
algorithm can be used.

Excerpt 1: De Jong’s elaborated EV algorithm [9]

EV:
Randomly generate the initial population of M individuals
(using a uniform probability distribution over the entire
geno/phenospace) and compute the fitness of each individual.

Do Forever:

Choose a parent as follows:
- select a parent randomly using a uniform probability

distribution over the current population

Use the selected parent to produce a single offspring by:
- making an identical copy of the parent, and then

probabilistically mutating it to produce the offspring.

Compute the fitness of the offspring.

Select a member of the population to die by:
- randomly selecting a candidate for deletion from the

current population using a uniform probability
distribution; and keeping either the candidate or the
offspring depending on which one has higher fitness.

End Do

8

TR/CIS/2010/1 3 EXAMPLES

Listing 12: De Jong’s EV expressed using ESDL

FROM random_individual SELECT (M) population
YIELD population

BEGIN GENERATION
FROM population SELECT 1 parent USING uniform_random

FROM parent SELECT offspring USING mutate_random

FROM population SELECT 1 candidate , others USING uniform_shuffle
FROM candidate , offspring SELECT 1 replacement USING best
FROM replacement , others SELECT population

YIELD population
END GENERATION

9

TR/CIS/2010/1 3 EXAMPLES

3.2 Binary-valued Evolutionary Algorithm (EA)

Eiben and Smith [6] describe a number of EA configurations using tables of parameters such as Table 1.
The equivalent system as an ESDL definition is given in Listing 13. The variable 𝑛, common to both
descriptions, requires a value before the algorithm can be used. However, the variable 𝑝𝑚 is calculated
from the value of 𝑛 in Listing 13. Note that the termination condition is not specified in Listing 13,
since it is not a fundamental part of the algorithm itself.

Table 1: Description of the EA for the Knapsack Problem [6]

Representation Binary strings of length 𝑛

Recombination One point crossover
Recombination probability 70%
Mutation Each value inverted with independent probability 𝑝𝑚
Mutation probability 𝑝𝑚 1/𝑛

Parent selection Best out of random 2
Survival selection Generational
Population size 500
Number of offspring 500
Initialisation Random
Termination condition No improvement in last 25 generations

Listing 13: The EA in Table 1 expressed using ESDL

FROM random_binary(length=n) SELECT 500 population
YIELD population

BEGIN GENERATION
FROM population SELECT 500 parents USING binary_tournament
FROM parents SELECT offspring USING crossover_one(per_pair_rate=0.7)
FROM offspring SELECT offspring USING mutate_bitflip(per_gene_rate=(1.0/n))

FROM offspring SELECT population

YIELD population
END GENERATION

10

TR/CIS/2010/1 3 EXAMPLES

3.3 Grammatical Evolution (GE)

Parameter tables accompany the GE problems presented by O’Neill and Ryan [4]. The tables primarily
specify the problem landscape parameters but also include evolution parameters. Table 2 contains one
such row of a table in [4] and Listing 14 shows an ESDL definition using these parameters. As earlier,
the termination condition is not part of the system definition in Listing 14.

Table 2: Subset of a GE tableau [4]

Parameters: Population Size = 500,
Termination when Generations = 51
Prob. Mutation = 0.01, Prob. Crossover = 0.9
Prob. Duplication = 0.01, Steady State

Listing 14: The GE parameters and implied system of Table 2 expressed using ESDL

FROM random_int SELECT 500 population
YIELD population

BEGIN GENERATION
FROM population SELECT 2 parents USING binary_tournament
FROM parents SELECT offspring USING \

crossover_one_different(per_pair_rate=0.9), \
mutate_random(per_gene_rate=0.01), \
mutate_duplicate(per_indiv_rate=0.01)

FROM offspring SELECT 1 replacer USING best
FROM population , offspring SELECT 500 population USING best

YIELD population
END GENERATION

3.4 Generalized Generation Gap (G3) Model

Deb et al. [5] describe a system for real parameter optimisation, shown in Excerpt 2. Listing 15 shows
the equivalent system expressed using ESDL.

Excerpt 2: The G3 system described in [5]

1. From the population 𝑃 , select 𝜇 parents randomly.
2. Generate 𝜆 offspring from 𝜇 parents using a recombination scheme.
3. Choose two parents at random from the population 𝑃 .
4. Of these two parents, one is replaced with the best of 𝜆 offspring and the

other is replaced with a solution chosen by a roulette-wheel selection proce-
dure from a combined population of 𝜆 offspring and two chosen parents.

11

TR/CIS/2010/1 3 EXAMPLES

Listing 15: The G3 system in Excerpt 2 expressed using ESDL

FROM random_real SELECT 100 population
YIELD population

BEGIN GENERATION
FROM population SELECT (mu) parents USING uniform_random
FROM parents SELECT (lambda) offspring USING crossover

FROM population SELECT 2 parents , remainder USING uniform_shuffle
FROM offspring SELECT 1 replacement_1 USING best
FROM parents , offspring SELECT 1 replacement_2 USING fitness_proportional

FROM remainder , replacement_1 , replacement_2 SELECT population
YIELD population

END GENERATION

3.5 Genetic Programming (GP) using ECJ

The ECJ software package uses a linear notation11 to describe evolutionary systems. The system
described by Koza [7] is partially12 shown using ECJ’s notation in Listing 16 and as an ESDL definition
in Listing 17. (Some parameters used in Listing 17 are not shown in Listing 16.)

Listing 16: Koza’s GP system [7] partially expressed using ECJ’s parameter format

pop.subpop .0. size = 1000
pop.subpop .0. species = ec.gp.GPSpecies
pop.subpop .0. species.ind = ec.gp.GPIndividual
pop.subpop .0. species.ind.numtrees = 1
pop.subpop .0. species.ind.tree.0 = ec.gp.GPTree
pop.subpop .0. species.ind.tree .0.tc = tc0
pop.subpop .0. species.numpipes = 2
pop.subpop .0. species.pipe.0 = ec.gp.koza.CrossoverPipeline
pop.subpop .0. species.pipe .0. prob = 0.9
pop.subpop .0. species.pipe.1 = ec.gp.koza.ReproductionPipeline
pop.subpop .0. species.pipe .1. prob = 0.1

Listing 17: Koza’s GP system [7] expressed using ESDL

FROM real_tgp(terminal_prob=0.1,deepest=6,terminals=1) SELECT 1000 population
YIELD population

BEGIN GENERATION
FROM population SELECT 100 reproduced , 900 parents USING tournament(k=7)
FROM parents SELECT offspring USING crossover_one(deepest_result=17)

FROM reproduced , offspring SELECT population
YIELD population

END GENERATION

3.6 Cooperative Coevolutionary Genetic Algorithm 1 (CCGA-1)

Potter and De Jong in [25] describe and demonstrate CCGA-1 as a “starting point” model for coop-
erative coevolution. Excerpts 3–5 show the original descriptions from [25] and Listing 18 shows the
equivalent ESDL description. The ESDL description is somewhat verbose since many similar lines

11The notation is Java’s property list format, which uses a key=value notation.
12The complete description is over 150 lines and is available at http://cs.gmu.edu/~eclab/projects/ecj/docs/

parameters.html

12

http://cs.gmu.edu/~eclab/projects/ecj/docs/parameters.html
http://cs.gmu.edu/~eclab/projects/ecj/docs/parameters.html

TR/CIS/2010/1 3 EXAMPLES

are repeated for each population. ESDL deliberately omits a method for generalising to multiple
populations, as discussed later.

Excerpt 3: CCGA-1 algorithm from [25]

gen=0
for each species s do begin

Pops(gen) = randomly initialized population
evaluate fitness of each individual in Pops(gen)
end

while termination condition = false do begin
gen = gen + 1
for each species s do begin

select Pops(gen) from Pops(gen–1) based on fitness
apply genetic operators to Pops(gen)
evaluate fitness of each individual in Pops(gen)
end

end

Excerpt 4: CCGA-1 fitness evaluation description from [25]

CCGA-1 begins by initializing a separate population of individuals for each
function variable. The initial fitness of each subpopulation member is computed
by combining it with a random individual from each of the other species and
applying the resulting vector of variable values to the target function.

After this startup phase, each of the individual subpopulations in CCGA-1 is
coevolved in a round-robin fashion using a traditional GA. The fitness of a subpop-
ulation member is obtained by combining it with the current best subcomponents
of the remaining (temporarily frozen) subpopulations.

Excerpt 5: CCGA-1 experimental parameters from [25]

representation: binary (16 bits per function variable)
selection: fitness proportionate

fitness scaling: scaling window technique (width of 5)
elitist strategy: single copy of best individual preserved

genetic operators: two-point crossover and bit-flip mutation
mutation probability: 1/chromlength
crossover probability: 0.6

population size: 100

13

TR/CIS/2010/1 3 EXAMPLES

Listing 18: CCGA-1 expressed for two populations using ESDL

FROM random_binary(length=16) SELECT 100 popA , 100 popB

JOIN popA , popB INTO joinedA USING each_with_random
EVALUATE joinedA USING rastrigin
EVALUATE popA USING assign(source=joinedA)

JOIN popB , popA INTO joinedB USING each_with_random
EVALUATE joinedB USING rastrigin
EVALUATE popB USING assign(source=joinedB)

YIELD joinedA , joinedB , popA , popB

BEGIN GENERATION
FROM popA SELECT parents USING fitness_proportional
FROM popA SELECT 1 elitist USING best
FROM parents SELECT offspring USING crossover_two(per_pair_rate=0.6), \

mutate_bitflip(per_gene_rate=1/16)
FROM offspring , elitist SELECT 100 popA USING best

JOIN popA , popB INTO joinedA USING each_with_best
EVALUATE joinedA USING rastrigin
EVALUATE popA USING assign(source=joinedA)
YIELD joinedA , popA

FROM popB SELECT parents USING fitness_proportional
FROM popB SELECT 1 elitist USING best
FROM parents SELECT offspring USING crossover_two(per_pair_rate=0.6), \

mutate_bitflip(per_gene_rate=1/16)
FROM offspring , elitistB SELECT 100 popB USING best

JOIN popB , popA INTO joinedB USING each_with_best
EVALUATE joinedB USING rastrigin
EVALUATE popB USING assign(source=joinedB)
YIELD joinedB , popB

END GENERATION

14

TR/CIS/2010/1 3 EXAMPLES

3.7 Evolution Strategies (ES)

Eiben and Smith describe ES in text form, including the 1/5th adaptive mutation rule [6]. Listings 19
and 20 show ES using an ESDL definition to describe the groups and their interactions and pseudocode
to describe the statistical calculations and conditional adaptation.

Listing 19: Pseudocode for the ES functions used in Listing 20

function calculate_success_rate(parents , offspring)
Return the p e r c e n t a g e o f o f f s p r i n g who a r e more f i t than t h e i r p a r e n t .
count = 0

for each parent and offspring in parents and offspring
if offspring.fitness > parent.fitness then increment count

return count / number of parents

function adapt(current_step , adapt_step , success_rate)
Use the 1/ 5th a d a p t i v e muta t i on r u l e to r e t u r n the new s t e p s i z e .
new_step = current_step

if success_rate > 0.21:
new_step = current_step * (1.0 + adapt_step)

otherwise , if success_rate < 0.19:
new_step = current_step * (1.0 - adapt_step)

return new_step

Listing 20: ES expressed using ESDL

FROM random_real SELECT 10 population
YIELD population

step_size = 1.0
adapt_step_size = 0.1

BEGIN GENERATION
FROM population SELECT 1 parent USING uniform_random
FROM parent SELECT 10 parents USING repeat
FROM parents SELECT offspring USING \

mutate_gaussian(step_size=current_step , \
per_gene_rate=1.0)

YIELD offspring

Ad ju s t the s t e p s i z e based on the s u c c e s s r a t e o f f s p r i n g .
(c a l c u l a t e_ s u c c e s s_ r a t e and cu r r e n t_ s t e p a r e d e f i n e d above)
success_rate = calculate_success_rate(parents , offspring)
step_size = adapt(step_size , adapt_step_size , success_rate)

FROM population , offspring SELECT 10 population USING best
YIELD population

END GENERATION

15

TR/CIS/2010/1 3 EXAMPLES

3.8 Differential Evolution (DE)

The DE algorithm [8] is summarised into the flow chart shown in Figure 1. The equivalent ESDL
description is given in Listing 21. The weighted-difference-vector mutation operation is abstracted
from the system definition, allowing a more suitable programming language be used, such as Python
or MATLAB. Listing 22 shows a potential implementation for mutate_DE as a generator in Python.

x0,g x1,g x2,g x3,g

1) Choose target vector and base vector

2) Random choice of two population members

Population
Px,g

f(x0,g) f(x1,g) f(x2,g) f(x3,g) f(xN-2,g)

parameter vector xN-1,g

objective function value f(xN-1,g)

f(xN-1,g)

xN–1,g

+ -
xr2,g xr1,g

(target vector)

xr0,g (=base vector) F 3) Compute weighted
 difference vector

4) Add to base vector

v0,g v1,g v2,g v3,g vN–2,g vN–1,g

f(v0,g) f(v1,g) f(v2,g) f(v3,g) f(vN-2,g) f(vN-1,g)

mutant
population

Pv,g

Crossover

u0,g trial vector

select
trial

or target
5) x0,g+1 = u0,g if f(u0,g) <= f(x0,g), else x0,g+1 = x0,g

x0,g+1 x1,g+1 x2,g+1 x3,g+1 xN–2,g+1 xN–1,g+1

f(x0,g+1) f(x1,g+1) f(x2,g+1) f(x3,g+1) f(xN-2,g+1) f(xN-1,g+1)

new
population

Px,g+1

xN–2,g

Figure 1: DE’s generate-and-test loop from Price et al. [8]

16

TR/CIS/2010/1 3 EXAMPLES

Listing 21: The sequence in Figure 1 expressed using ESDL

FROM random_real SELECT 100 population
YIELD population

BEGIN GENERATION
SELECT w i t hou t a USING makes a copy o f the group
FROM population SELECT 100 targets

S t o c h a s t i c U n i v e r s a l Sampl ing f o r b a s e s
FROM population SELECT (size) bases USING fitness_sus(mu=size)

Ensure r0 != r1 != r2 , but any may equa l i
JOIN bases , population , population INTO mutators \

USING random_tuples(distinct=True)

mutate_DE i s d e f i n e d i n Listing 22
FROM mutators SELECT mutants USING mutate_DE(scale=0.8)

JOIN targets , mutants INTO target_mutant_pairs USING tuples
FROM target_mutant_pairs SELECT trials \

USING crossover_tuple(per_gene_rate=0.8)

JOIN targets , trials INTO target_trial_pairs USING tuples
FROM target_trial_pairs SELECT population USING best_of_tuple

YIELD population
END GENERATION

Listing 22: The mutation operator used in Listing 21 expressed using Python

def mutate_DE(source , scale):
'''A generator that yields one mutated genome for every tuple of genomes
passed in source.'''

for joined_individual in source:
base , parameter1 , parameter2 = joined_individual[:]
yield [b + scale * (p1 - p2) for b, p1, p2 in \

zip(base , parameter1 , parameter2)]

17

TR/CIS/2010/1 4 DISCUSSION

4 Discussion

4.1 Implementation

An ESDL implementation requires an execution engine and a collection of domain operators. The
execution engine runs the ESDL system and may be an interpreter, a compiler or a hybrid of the
two. ESDL is easily transformed into other programming languages, particularly those with a well-
defined iterator or enumerator pattern. ESDL can also be transformed into the forms used by other
frameworks, such as ECJ’s parameter format (shown in Listing 16), provided the underlying system is
capable of supporting the algorithm.

A collection of basic filtering, joining and modification operators is required, as is the ability to
specify custom operators. There is not yet a standard set of operators for ESDL implementations,
however, standardising the behaviour of common operators may be beneficial to the portability of
system descriptions.

The current reference implementation is esec, available from http://code.google.com/p/esec.
esec is a Python based framework that transforms ESDL into Python code and executes it using the
Python interpreter.

4.2 Immutable Individuals

Part of the contract between ESDL systems and external operators is that the solution represented
by an individual does not change, that is, a given individual always receives the same fitness when
evaluated with a static evaluator.

This contract allows individuals to receive different fitness values over dynamic landscapes or where
the evaluator changes as the result of an EVALUATE statement. However, operators that “modify”
individuals (such as mutation or crossover) must create new individuals rather than modifying the
originals. This avoids the need for the explicit cloning of individuals required by systems that perform
modifications in situ.

4.3 Conditional Statements

The lack of conditional statements13 in ESDL is deliberate. Limiting the number of paths through a
system to one significantly reduces the complexity [28]. Systems described using ESDL are effectively
fixed networks defining how individuals are routed between various groups.

This omission does not limit the ability of ESDL in terms of describing adaptive systems, as complex
operations can and should be described separately in a more appropriate language (as in listings 19–22).
However, the potential need is acknowledged, and the authors are currently designing an extension to
ESDL to allow networks that are more flexible.

As with conditional statements, the omission of conditional loops is deliberate. While a simple
repeated-expansion construct14 would allow some multi-population systems (such as Listing 18) to be
written more tersely, it would be insufficient for systems with any difference between populations. A
construct that was sufficient for handling complex cases would greatly reduce the readability of ESDL,
while only serving to remove repetition that is readily apparent to the human eye.

4.4 FROM–SELECT Ordering

The keywords in the FROM–SELECT statement could have been ordered in a multitude of ways. The
selected ordering, “FROM source SELECT destination USING filter,” best matches ESDL’s model of pro-
cessing and is consistent with its other instructions.

Exchanging FROM and SELECT would produce a more grammatically correct statement (in English),
for example, “SELECT destination FROM source USING filter.” When read, however, this emphasises the

13Such as if and while.
14A form of macro that repeats a block of code multiple times as if the developer had done so themselves.

18

http://code.google.com/p/esec

TR/CIS/2010/1 5 SUMMARY

result of the operation over the source. The statement “SELECT destination USING filter FROM source”
is similar to the mathematical function notation (𝑑𝑒𝑠𝑡 = 𝑓 (𝑠𝑟𝑐)) but further reduces the importance
of the source group. FROM–SELECT–USING best describes where to begin, where to finish and how to
get there.

Furthermore, the FROM–SELECT–USING ordering matches “JOIN sources INTO destination USING
joiner,” which improves the readability of ESDL. The alternative orderings of JOIN–INTO–USING are
grammatically clumsy and not considered.

5 Summary

A common language for describing algorithms in evolutionary computation could be beneficial to the
field. The present state of the field limits independent verification and potentially prevents algorithms
gaining wider use. A standardised description language allows algorithms and structures to be defined
clearly, and with sufficient detail, that other researchers are able to confidently implement and make
use of them.

We have presented Evolutionary System Definition Language (ESDL), which describes systems
in a form that is unambiguous and abstracted from the behaviour and implementation of domain
operators. From the examples given, we have demonstrated that ESDL is capable of representing a
range of evolutionary algorithms. ESDL emphasises groups over individuals or representations and is
concise for simple systems while being sufficient for complex, multiple population systems.

ESDL is suitable for automatic transformation into executable code or input to existing frameworks,
while most other forms of description require manual interpretation and translation. By simplifying
this translation, algorithms expressed in ESDL are easier to use correctly and are more likely to be
used by the wider evolutionary computation community.

19

TR/CIS/2010/1 REFERENCES

References

[1] E. Alba and J. M. Troya, “A survey of parallel distributed genetic algorithms,” Complexity, vol. 4,
1999. 1, 4

[2] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE
Press, 2007. 1

[3] K. A. De Jong, “Evolutionary Computation,” 2009. 1

[4] M. O’Neill and C. Ryan, Grammatical Evolution. Kluwer Academic Publishers, 2003. 1, 2, 11

[5] K. Deb, A. Anand, and D. Joshi, “A computationally efficient evolutionary algorithm for real-
parameter optimization,” Evolutionary Computation, vol. 10, December 2002. 1, 11

[6] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. Springer, 2003. 1, 2, 10,
15

[7] J. R. Koza, Genetic Programming: On The Programming of Computer Programs by Natural Se-
lection. MIT Press, 1992. 1, 2, 12

[8] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution. Springer, 2005. 1, 2, 4, 16

[9] K. A. De Jong, Evolutionary Computation: A Unified Approach. MIT Press, 2006. 1, 2, 8

[10] A. E. Eiben and M. Jelasity, “A critical note on experimental research methodology in EC,” in
Proceedings of the 2002 Congress on Evolutionary Computation. IEEE Press, 2002. 1

[11] E. S. Peer, A. P. Engelbrecht, and F. van den Bergh, “Building sustainable collaborative research
software.” 1

[12] S. Ventura, C. Romero, A. Zafra, J. Delgado, and C. Hervás, “JCLEC: a Java framework for
evolutionary computation,” Soft Computing - A Fusion of Foundations, Methodologies and Appli-
cations, vol. 12, February 2008. 1

[13] A. Rummler and T. Strufe, “Evolvica - a framework for evolutionary computation,” 2004. 1

[14] M. R. Cohen and E. Nagel, Introduction to Logic and Scientific Method. Routledge & Kegan
Paul Ltd, 1934. 1

[15] T. Painter, “Grammatical Evolution in Python,” 2006. 1

[16] M. O’Neill and C. Ryan, “Grammatical Evolution: A steady state approach,” in Late Breaking
Papers at the Genetic Programming 1998 Conference. Omni Press, 1998. 1

[17] J. Alcalá-Fernández, L. Sánchez, S. García, M. J. del Jesus, S. Ventura, J. M. Garrell, J. Otero,
C. Romero, J. Bacardit, V. M. Rivas, J. C. Fernández, and F. Herrera, “KEEL: a software tool
to assess evolutionary algorithms for data mining problems,” Soft Computing, vol. 13, February
2009. 2

[18] J. J. Merelo and A. Prieto, “GAGS, a flexible object-oriented library for evolutionary computa-
tion,” in Proceedings of the First International Workshop on Machine Learning, Forecasting and
Optimization, 1996. 2

[19] J. J. Merelo, P. A. Castillo, and E. Alba, “Algorithm::Evolutionary, a flexible Perl module for
evolutionary computation,” Soft Computing, vol. 14, 2010. 2

[20] J.-B. Mouret and S. Doncieux, “Sferesv2: Evolvin’ in the multi-core world,” in Proceedings of the
10th International Congress on Evolutionary Computation. IEEE Computer Society, 2010. 2

20

TR/CIS/2010/1 REFERENCES

[21] P. J. Ashenden, The Designer’s Guide to VHDL. Morgan Kaufmann Publishers, 1995. 2

[22] C. B. Veenhuis, K. Franke, and M. Köppen, “A semantic model for evolutionary computation,” in
6th International Conference on Soft Computing, 2000. 2

[23] S.-H. Liu, M. Mernik, and B. R. Bryant, “Parameter control in evolutionary algorithms by domain-
specific scripting language PPCEA,” in Proceedings of the 1st International Conference on Bioin-
spired Optimization Methods and their Applications, 2004. 2

[24] M. Nowostawski, “eaml-design mailing list,” February 2002, http://sourceforge.net/
mailarchive/forum.php?thread_name=3C72DA51.3030709%40marni.otago.ac.nz&forum_
name=eaml-design. 2

[25] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach to function optimiza-
tion,” in Proceedings of the The Third Conference on Parallel Problem Solving from Nature, 1994.
5, 12, 13

[26] G. Syswerda, “A study of reproduction in generational and steady-state genetic algorithms,” in
Foundations of Genetic Algorithms. Morgan Kaufmann Publishers, 1991. 5

[27] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive systems,” Ph.D. disser-
tation, University of Michigan, 1975. 5

[28] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software Engineering, vol. 2,
December 1976. 18

21

http://sourceforge.net/mailarchive/forum.php?thread_name=3C72DA51.3030709%40marni.otago.ac.nz&forum_name=eaml-design
http://sourceforge.net/mailarchive/forum.php?thread_name=3C72DA51.3030709%40marni.otago.ac.nz&forum_name=eaml-design
http://sourceforge.net/mailarchive/forum.php?thread_name=3C72DA51.3030709%40marni.otago.ac.nz&forum_name=eaml-design

	Introduction
	Language
	Overview
	Basic Operations
	System Structure
	Adaptive Systems
	Syntactical Elements

	Examples
	EV Algorithm
	Binary-valued Evolutionary Algorithm (EA)
	Grammatical Evolution (GE)
	Generalized Generation Gap (G3) Model
	Genetic Programming (GP) using ECJ
	Cooperative Coevolutionary Genetic Algorithm 1 (CCGA-1)
	Evolution Strategies (ES)
	Differential Evolution (DE)

	Discussion
	Implementation
	Immutable Individuals
	Conditional Statements
	FROM–SELECT Ordering

	Summary

