ESDL Multiblock Extension Proposal

Steve Dower*

November 11, 2010

Abstract

Evolutionary Systems Definition Language (ESDL) is a domain-specific language for search
algorithms based on iterative improvements to a solution population. The iterating part of an
algorithm is described using the notion of a generation block. This proposal extends ESDL to
support multiple blocks, allowing algorithms that consist of several significantly different blocks of
behaviour with a flexible block switching method.

1 Introduction

Evolutionary System Definition Language (ESDL) is a domain-specific language for describing the flow
of evolutionary or population-based algorithms [2]. It defines a system as groups of individuals and the
process used to create new groups from existing ones. Groups are created by selecting and modifying
individuals from existing groups or from generators.

In ESDL as previously defined in [2], two blocks of code are required: the initialisation block and
generation block. The generation block is contained within BEGIN GENERATION and END GENERATION
statements. Each generation, this block is executed once. Between generations, the primary population
is scanned to determine whether to terminate the experiment, and if not, the process repeats. The
initialisation block is implied and contains all commands appearing before BEGIN GENERATION. At the
start of the experiment, this block is executed once to create any groups or variables required by the
generation block.

Both the initialisation and generation blocks are fixed sequences — the same source groups, desti-
nation groups, filters and selectors must be used each iteration. While parameters may be adjusted
to omit certain filters, algorithms that require significantly different flows are not easily supported at
present.

For example, the CHC algorithm [3] uses a “catastrophic” clone and mutation operation that is
triggered by a certain level of diversity, and hybrid algorithms [1| require the ability to execute one
search algorithm multiple times before switching to another, potentially based on iterations, time or
some property of the process.

This proposal describes an extension to ESDL to generalise the generation block into multiple
named blocks. A separate plan determines which block to execute each iteration. Group and variable
scope is clarified to avoid ambiguity when sharing between blocks. Section 2 specifies the proposed
extension in the context of changes to ESDL as described in [2]|. Section 4 discusses two alternatives,
including both supporting arguments and the rationale for their non-selection. Appendix A includes a
suggested set of modifications to implement the described functionality in esec.!

*Contact via http://stevedower.id.au/
!The reference implementation of ESDL; available online at http://code.google.com/p/esec/.

http://stevedower.id.au/
http://code.google.com/p/esec/

TR/CIS/2010/6 2 MULTIBLOCK EXTENSION

2 Multiblock Extension

2.1 Intent

The primary intent of this extension is to support hybrid and meta-algorithms with more than one
mode of operation. Algorithm classes? and multi-population algorithms® are already supported by
ESDL and do not require multiple blocks.

This extension is not intended as an abstraction mechanism. Rather, it is a way to combine separate
algorithms into a hybrid with a minimum amount of complexity or obscurity added to the definitions.

2.2 BEGIN Statement

The BEGIN GENERATION statement is replaced by a BEGIN <identifier> statement that defines the
start of a named block. The identifier immediately following BEGIN is the name of the block. A valid
block name may contain only letters, numbers and underscores and must begin with a letter. Block
names may not be the same as a variable or group name.? All names in ESDL are case-insensitive.

2.3 END Statement

As a minor generalisation, the END statement closes the most recently started block, including REPEAT
blocks. The text appearing after END is ignored. Including the name of the block is recommended
where it improves readability, even though it does not form part of the required syntax.

2.4 Block Selector

Each iteration, a block must be selected to be executed. The actual specification of this selection process
is best determined by the underlying implementation, but for consistency between implementations, it
must meet the following requirements:

Selection is immediate: An algorithm is only required to specify a block for the current iteration.
Implementations may support knowledge or hints of future selections as an optimisation, but algorithms
cannot be prevented from deciding based on the timeliest results.

Selection is final: Once a block has been selected, it must be executed to completion. Algorithms
have no way to abort a partially executed block.

Selection is precise: Exactly one block must be selected each iteration. The selector may use
stochastic methods to decide, but must specify exactly which block will be executed. Multiple blocks
cannot be executed within a single iteration; each block will form its own iteration.

Selection is optional: If no selector is provided, each block is executed one after the other in the
order specified in the definition.

These requirements imply that a selector should be implemented as a user-defined function that is
evaluated at the start of each iteration. However, implementations are free to use whatever structure
is most appropriate. For example, many programming languages provide an iterator pattern that is
suitable for this purpose.

There are no limits on presentation in written works — authors are best positioned to select an
appropriate style — though it is intended that selector specifications will be presented separately from
ESDL systems and associated through text (as shown in Section 3).

2.5 Rationale

For this extension, a block selector function must be provided externally from the ESDL system
definition. This is similar to the way generators, filters, selectors and evaluators are currently used

2 Algorithm classes should be implemented as a separate definition for each specific algorithm.
3Multi-population algorithms may be implemented using a single block with multiple groups.
4Names in ESDL are global to prevent confusion caused by using the same name for different purposes.

TR/CIS/2010/6 3 EXAMPLES

with ESDL: all of these elements are specified separately in a language or form defined by the underlying
implementation (or, for publications, the author’s preference) [2].

While external elements are typically referenced by name from within the definition, the block
selector should not be, using the default evaluator approach as precedent. Specification of the default
evaluator is handled by the underlying framework (for example, esec uses the value of its “landscape”
property). Providing a selector in a similar manner is reasonable, and since the selector itself cannot
be changed, though its internal state may, there is no need for an ESDL statement to specify it.

Using a selector defined separately from the definition can significantly simplify the language im-
plementation, by taking advantage of whatever programmatic functionality is available. It allows
sequences to be described in forms other than code when such a description is more apt (for example,
by using a timeline as shown in Figure 1). The responsibility for ensuring a correctly implemented
sequence belongs to the person implementing the algorithm, whereas the author can ensure that the
remainder of the ESDL definition is correct prior to publication.

3 Examples

The examples presented in this section have been selected as demonstrations of the multiblock syntax
and its suitability for presenting algorithms. These examples are not intended to represent improved
or even necessarily useful algorithms.

3.1 Random Switching

This example demonstrates a simple evolutionary algorithm that alternates randomly between muta-
tion and crossover each generation. Listing 1 specifies a system consisting of blocks named mutate_block
and crossover_block. The mutate_block block uses tournament selection, Gaussian mutation and
only retains individuals that are an improvement over the initial population. The crossover block cre-
ates a pool of parents from the best half of the population and a fitness-independent random selection.’
Non-overlapping selection is used to replace the original population.

Listing 2 specifies which block should be run in any generation using a 0.5 probability of selecting
either block, independent of any previous selection.

Listing 1: System definition with two blocks in ESDL

FROM random_real SELECT (size) population
YIELD population

BEGIN mutate_block
FROM population SELECT (size) parents USING binary_tournament
FROM parents SELECT offspring USING mutate_gaussian
FROM population, offspring SELECT (size) population USING best

YIELD population
END

BEGIN crossover_block
FROM population SELECT (size/2) parentsl USING best
FROM population SELECT (size/2) parents2 USING uniform_random
FROM parentsl, parents2 SELECT parents USING uniform_shuffle
FROM parents SELECT population USING crossover_uniform

YIELD population
END

5This is not actually parent-mate selection; there is no guarantee that a parent selected using best will mate with a
parent selected at random.

TR/CIS/2010/6

3 EXAMPLES

Listing 2: Block selection for Listing 1 in pseudocode

if fair_coin_toss () = HEADS
do 'mutate_block'

else

do 'crossover_block'

3.2 Iteration Count Switching

Listing 3 provides a definition of a system with three different levels of mutation in separate blocks.
While parameters such as per_indiv_rate and longest can be specified with adjustable variables,
exchanging mutate_bitflip for muitate_gap_inversion is not as trivial.® Listing 3 separates the three
mutation processes and uses the block names to label each as high, moderate or low impact.

Figure 1 provides a graphical timeline indicating when each block should be run and for how long.
To run the algorithm, a reader is required to convert the timeline into whatever code is required by
the implementation they are using, allowing a greater level of flexibility. For example, listings 4 and 5
show two alternative implementations of Figure 1 that may be used with esec (with the modifications
specified in Appendix A).

Listing 3: System definition with three blocks in ESDL

FROM binary_zero(length=20) SELECT (size) population
YIELD population

BEGIN high_mutation

FROM
FROM

FROM

population SELECT (size) parents USING binary_tournament
parents SELECT offspring USING \
mutate_gap_inversion(per_indiv_rate=0.1, 10ngest=10)
population, offspring SELECT (size) population USING best

YIELD population

END

BEGIN moderate_mutation

FROM
FROM

FROM

population SELECT (size) parents USING binary_tournament
parents SELECT offspring USING \
mutate_gap_inversion(per_indiv_rate=0.1, longest=5)
population, offspring SELECT (size) population USING best

YIELD population

END

BEGIN low_mutation

FROM
FROM

FROM

population SELECT (size) parents USING binary_tournament
parents SELECT offspring USING \
mutate_bitflip(per_indiv_rate=0.1, per_gene_rate=0.5)
population, offspring SELECT (size) population USING best

YIELD population

END

SFor example, this could be done by always applying both mutation types and adjusting the per_indiv_rate to zero
to bypass one or the other.

TR/CIS/2010/6 3 EXAMPLES

High Mutation Moderate Mutation Low Mutation

(4 iterations) (6 iterations) (10 iterations)

1 5 11 20

Figure 1: The block sequence for Listing 3 as a timeline

Listing 4: Python iterator implementing Figure 1 for use with esec

def SelectorIterator():
for _ in xrange(4):
yield 'high_mutation'
for _ in xrange(6):
yield 'moderate_mutation'
_ in xrange(10):
yield 'low_mutation'

for

config['selector'] = SelectorIterator ()

Listing 5: Python list specification of Figure 1 for use with esec

schedule = ['high_mutation'] * 4 + \
['moderate_mutation'] * 6
['"low_mutation'] * 10

+ \

config['selector'] = schedule

3.3 CHC Algorithm

The CHC algorithm adapts a number of parameters, including the population size, to maintain a high
level of diversity, as well as encouraging reproduction between individuals that are different. Each
generation, parents are selected by shuffling (that is, uniform random selection without replacement)
and filtered using no_incest so that the number of differences between genes in each individual is at
least threshold. Half-uniform crossover (crossover_hux) is then used to select half of the differences
between the two individuals and exchange them.

Since no_incest performs filtering rather than selection, the offspring group may contain fewer
individuals than population. If the offspring group is empty, threshold is reduced by one (line 17
of Listing 6). When threshold reaches zero, the population is regenerated by reproducing and aggres-
sively mutating the current best individual. This cataclysmic mutation is defined in the CATACLYSM
block of Listing 6 and is triggered by lines 5 and 6 of Listing 7.

TR/CIS/2010/6 3 EXAMPLES

Listing 6: System definition for CHC in ESDL

FROM random_binary(length=20) SELECT (size) population USING unique
YIELD population

threshold = 5

BEGIN GENERATION
FROM population SELECT offspring USING \
uniform_shuffle, \
no_incest (threshold=threshold), \
crossover_hux

FROM population, offspring SELECT (size) population USING \
unique, best

YIELD population, offspring
threshold = decrement_if_empty (group=offspring, original=threshold)
END GENERATION
BEGIN CATACLYSM
FROM population SELECT 1 preserve USING best_only
FROM preserve SELECT (size-1) offspring USING \
repeated, \

mutate_bitflip(per_gene_rate=0.35)

FROM preserve, offspring SELECT population
YIELD population

threshold = 5
END CATACLYSM

Listing 7: Block selector for CHC (Listing 6) in pseudocode

run 'generation' once at the start

do 'generation'

while still running:
if the offspring group is empty and threshold is =zero
do 'cataclysm' F# block names are case—insensitive
else
do 'generation'

3.4 PSO-EO Hybrid Algorithm

Hybrid algorithms are combinations of other, generally complementary, algorithms. Particle Swarm
Optimisation (PSO) [4] exhibits good convergence and exploitative characteristics, while Extremal
Optimisation (EO; in this case, Continuous Extremal Optimisation as described by [5]) performs a
wider exploration of the solution space. Alternating these algorithms on a single solution population
provides an efficient balance between concentrating on known good solutions versus exploring other
areas.

The initialisation section is given in Listing 8. A block for PSO is shown in Listing 9 and for EO
in Listing 10. A simple iteration-count selector is given in Listing 11 as a Python iterator object.

TR,/CIS/2010/6 4 ALTERNATE DESIGNS

Listing 8: Initialisation definition for PSO-EO algorithm in ESDL

FROM random_pso(length=30, lowest=15, highest=30, \
position_bounds=(-100,100)) SELECT (size) population

FROM population SELECT 1 global_best USING best_only

FROM population SELECT (size) p_bests

YIELD population

Listing 9: PSO system definition in ESDL

BEGIN pso_generation
JOIN population, p_bests INTO pairs USING tuples
FROM pairs SELECT population USING \
update_velocity(global_best=global_best), \
update_position_clamp

JOIN population, p_bests INTO pairs USING tuples
FROM pairs SELECT p_bests USING best_of_tuple

FROM population, global_best SELECT 1 global_best USING best_only

YIELD global_best, population
END pso_generation

Listing 10: EO system definition in ESDL

BEGIN eo_generation
FROM population SELECT 1 candidate, rest USING \
rank_proportional (replacement=False, invert=True)
FROM candidate SELECT replacement USING mutate_random(genes=1)
FROM replacement, rest SELECT population
YIELD population
END eo_generation

Listing 11: Block selector for listings 8-10 in Python

class PSOEOSelector (object):
def init__(self):

self .steps = 0

def __iter__(self):
return self

def next(self):
self.steps += 1
if self.steps <= 920:
return 'pso_generation'
else:
if self.steps == 1000: self.steps = 0
return 'eo_generation'

4 Alternate Designs

The two designs presented in this section were considered as alternative ways of supporting multiple
blocks in ESDL. Each is presented as a summary of modifications to ESDL, along with the perceived
implications.

TR,/CIS/2010/6 4 ALTERNATE DESIGNS

4.1 BEGIN-IF Statement

For this alternative, the BEGIN statement would be replaced with a statement of the form “BEGIN
block_name IF condition,” where condition is an expression evaluating to a Boolean true or false.

Each iteration, the condition for each block is evaluated in the order the blocks are specified in the
definition. The first block with an expression evaluating to true is the block executed for that iteration.

Compared to the proposed extension, this alternative would have a great readability advantage
in specifying the condition for each block at the same location as the block is defined. However,
this would place severe limits on the range of available conditions. For example, ESDL provides no
access to the elapsed time, random number generators or complex mathematics. The use of external
functions for each condition could mitigate this at the expense of separating the condition from the
system definition.

Due to the relevance of block ordering to the behaviour of the algorithm, it would no longer be
possible to break a definition into separate listings (as in listings 8-10) without clearly identifying the
order they should be recombined. Random selection of a block, even using an external function, would
require careful specification to avoid bias in favour of (or against) those blocks declared earlier.

Operations such as switching based on iteration count can clutter the definition, as shown in
Listing 12 compared to the similar Listing 3 from Section 3.2. Tight integration between the schedule
and the system definition also limits the ease of testing alternate sequences. Abstraction of the selector
as in proposed extension provides significantly improved readability.

Listing 12: Switching on iteration count using the alternative BEGIN-IF syntax

FROM binary_zero(length=20) SELECT (size) population
YIELD population

iteration = 0

BEGIN high_mutation IF iteration < 4
FROM population SELECT (size) parents USING binary_tournament
FROM parents SELECT offspring USING \
mutate_gap_inversion(per_indiv_rate=0.1, longest=10)
FROM population, offspring SELECT (size) population USING best

YIELD population
iteration = (iteration + 1) % 20
END

BEGIN moderate_mutation IF iteration < 10
FROM population SELECT (size) parents USING binary_tournament
FROM parents SELECT offspring USING \
mutate_gap_inversion(per_indiv_rate=0.1, 10ngest=5)
FROM population, offspring SELECT (size) population USING best

YIELD population
iteration = (iteration + 1) % 20
END

BEGIN low_mutation
FROM population SELECT (size) parents USING binary_tournament
FROM parents SELECT offspring USING \
mutate_bitflip(per_indiv_rate=0.1, per_gene_rate=0.5)
FROM population, offspring SELECT (size) population USING best

YIELD population
iteration = (iteration + 1) % 20
END

Finally, allowing Boolean expressions within ESDL would require significant development invest-
ment of the language definition, which currently has no support for conditional statements (as discussed

TR,/CIS/2010/6 4 ALTERNATE DESIGNS

in [2]). Also, with the potential for readability to suffer due to complex conditions, the external selector
proposal is considered to support better designs than the BEGIN-IF alternative does.

4.2 SCHEDULE Block

For this alternative, the BEGIN and END statements are replaced as in sections 2.2 and 2.3. Rather
than using a selector, a new block type would be added, using the keyword SCHEDULE. Exactly one
SCHEDULE block would have to be provided when more than one regular block (not including the
initialisation block) was. Within the SCHEDULE block, only the REPEAT command and a “call” statement
would be available.

REPEAT would operate identically to those in a regular block. Call statements would be specified
by including a block name as the only word on a line.

A SCHEDULE block could be executed in one of two ways: either by treating the SCHEDULE block as
the entire iteration, or by stepping through the SCHEDULE block executing one call per iteration. Each
approach would result in a different interpretation of “iteration;” for the remainder of this section the
latter is assumed.

The SCHEDULE block would lend itself to simple specification of switching on iteration count, as
shown in Listing 13 (compared to Listing 12 or Listing 3 and Figure 1). Complex iteration such as
that in Listing 14 is also clearly defined. Without an IF or WHILE statement, SCHEDULE is limited to
switching on iteration counts.

The argument against conditional statements made in Section 4.1 and [2], that is, their omission
improves readability, also applies to this alternative. Even though extra syntax could be added solely
to the SCHEDULE block and remain illegal within regular blocks, the inclusion of extra complexity within
ESDL could deter or hinder well-designed abstraction. Abstracting the SCHEDULE block into a separate
specification results in the proposal made in Section 2; it can be easily implemented in whatever
general-purpose programming language is preferred by the underlying framework or published using
whatever style or layout is preferred by the author.

Listing 13: Switching on iteration count using the alternative SCHEDULE syntax

The remainer of the definition is as defined in Listing 3

SCHEDULE
REPEAT 4
high_mutation
END
REPEAT 6
moderate_mutation
END
REPEAT 10
low_mutation
END
END SCHEDULE

TR,/CIS/2010/6 REFERENCES

Listing 14: Complex switching using the alternative SCHEDULE syntax

The remainer of the definition is as defined in Listing 3

SCHEDULE
high_mutation
REPEAT 3
REPEAT 2
moderate_mutation
END
REPEAT 3
low_mutation
END
END
high_mutation
REPEAT 3
low_mutation
END
END SCHEDULE

5 Summary

This proposal describes an extension to ESDL allowing multiple blocks within a system definition.
Multiple blocks may be used to implement algorithms with more than one mode of operation, such as
hybrid or meta-algorithms.

The proposed extension defined in Section 2 abstracts the block selector and cleanly separates it
from the system definition. A number of example uses are presented in Section 3. Two alternative
designs that include block selection in the definition are discussed and arguments against are made in
Section 4. Both are considered likely to reduce the readability of ESDL system definitions.

Multiple blocks allow ESDL to support a wider range of interesting and novel algorithms, especially
those in the field of hybrid and meta-algorithms. The proposal made achieves this without compro-
mising the readability of ESDL or restricting authors from using whatever form of description they
believe is most appropriate.

References

[1] K. A. De Jong, Fvolutionary Computation: A Unified Approach. MIT Press, 2006. 1

[2] S. Dower and C. Woodward, “Evolutionary System Definition Language,” Swinburne University of
Technology, Tech. Rep. TR/CIS/2010/1, 2010. 1, 3, 9

[3] L. Eshelman, “The CHC adaptive search algorithm,” in Foundations of Genetic Algorithms 1,
G. Rawlins, Ed. Morgan Kaufmann Publishers, 1990, pp. 265-283. 1

[4] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Neural Networks, 1995. Pro-
ceedings., IEEE International Conference on, vol. 4. TEEE, 1995, pp. 1942—-1948. 6

[5] T. Zhou, W.-J. Bai, L.-J. Cheng, and B.-H. Wang, “Continuous extremal optimization for Lennard-
Jones clusters,” Physical Review E, vol. 72, 2005. 6

10

TR/CIS/2010/6 A ESEC MODIFICATIONS

A esec Modifications

Listing 15 provides a complete patch to revision c5a7a90c78ac of esec, which is also available as the
tip of the multiblock branch (revision abde71044fa2) in the repository at http://code.google.com/
p/esec.

The compiler.py file is modified to parse block names and emit entry points for each block.
experiment.py is extended to accept a configuration parameter called selector: an iterable sequence
(such as a list or generator) containing the names of each block as a string. In system.py, a block
name parameter is added the step method. Finally a “block” format is added to consolemonitor.py
and csvmonitor.py to allow the most recently executed block to be included with the output.

Listing 15: Modifications to esec implementing the multiblock extension

diff —r c5a7a90c78ac —r abde71044fa2 esec/esec/compiler.py
--- a/esec/esec/compiler.py Mon Jun 28 08:07:01 2010 +1000
+++ b/esec/esec/compiler.py Tue Nov 09 14:34:19 2010 +1100
@@ -84,8 +84,7 @@

self._groups = None
self.src_lines = None
- self.reset = None
- self .breed = None
+ self.code = None

def compile(self):
''"'Compiles the source associated with this compiler object. The result
@@ -99,25 +98,16 @@
exec _BORN_ITER_DEF in self.context #pylint: disable=W0122

self._groups = set()

+ self .blocks = []
self.src_lines = list(self._filter_source(self.source_code))
- code_lines = list(self._transform(self.src_lines))

- code_blocks = [[]1 1]

- for line in code_lines:

- if line == None:

- code_blocks.append ([])

- else:

- code_blocks[-1].append(line)

+ transformed_lines = list(self._transform(self.src_lines))

- if len(code_blocks) > 2:

- raise ESDLSyntaxError ('Code after generation definition.', ("ESDL", None, None, None))
- elif len(code_blocks) == 2:
- init_code = '\n'.join(('%s = _group()' % g for g in self._groups))

- self .reset init_code + '\n' + '\n'.join(code_blocks[0])

- self.breed '\n'.join(code_blocks[1])
- else:
- self .reset = None
- self.breed = None
- raise ESDLSyntaxError ('No generation definition included.', ("ESDL", None, None, None))
+ code_lines = []
+ code_lines.extend('%s = _group()' % g for g in self._groups)
+ code_lines.append('"')
+ code_lines.extend(transformed_lines)
¥
+ self.code = '\n'.join(code_lines)
@classmethod

def _hide_nested(cls, src):
@@ -221,12 +211,12 @@
first_word = parts[0].upper ()

if first_word == 'BEGIN':
second_word = parts[2].partition(' ')[0].upper ()
- if second_word == 'GENERATION':
- yield None
- indent = "'
+ if second_word:
+ yield indent + "def _block_" + second_word + "():"
+ self.blocks.append(second_word)
+ indent += ' ' % 4
else:
- raise ESDLSyntaxError ('Unrecognised parameter to BEGIN: ' + second_word,
- ("ESDL", line_no+1, None, source_line))
+ raise ESDLSyntaxError ('BEGIN requires a block name.', ("ESDL", line_no+1, None, source_line))
elif first_word == 'END':

diff —r c5a7a90c78ac —r abde71044fa2 esec/esec/experiment.py
--- a/esec/esec/experiment.py Mon Jun 28 08:07:01 2010 +1000
+++ b/esec/esec/experiment.py Tue Nov 09 14:34:19 2010 +1100
ee -21,6 +21,7 @@

'monitor': 'x', # pre-initialised MonitorBase instance, class or dict
'landscape ': 'x',
'system': 'x', # allow System to validate
+ 'selector?': 'x',
'verbose': int,

11

http://code.google.com/p/esec
http://code.google.com/p/esec

TR/CIS/2010/6

A ESEC MODIFICATIONS

'''The expected format of

T__init_

the configuration dictionary passed to

@@ -154,6 +155,10 @@
self.system = System(cfg, self.lscape)
self.system.monitor = self.monitor
+ # -- Selector --
+ self.selector = cfg.selector or self.system.blocks
+ self.selector_iter = None
+
-- Pass full configuration to monitor --
self .monitor.notify ('Experiment', 'System', self.system)
self .monitor.notify ('Experiment', 'Landscape', self.lscape)
@@ -173,6 +178,7 @@
'''Start the experiment.
o
self.system.begin ()
+ self.selector_iter = iter(self.selector)
def step(self, ignore_monitor=False):
'''Executes the next step in the experiment. If the monitor's
@@ -190,11 +196,17 @@
This value is unaffected by “ignore_monitor ™.
Vi
+ try:
+ block = next(self.selector_iter)
+ except StopIlteration:
+ self.selector_iter = iter(self.selector)
+ block = next(self.selector_iter)
+
if self.monitor.should_terminate(self.system): #pylint: disable=E1103
- if ignore_monitor: self.system.step()
+ if ignore_monitor: self.system.step(block)
return False
else:
- self.system.step ()
+ self.system.step(block)

return True

def close(self):

diff —r c5a7a90c78ac —r abde71044fa2 esec/esec/monitors/consolemonitor.py
--- a/esec/esec/monitors/consolemonitor.py Mon Jun 28 08:07:01 2010 +1000
+++ b/esec/esec/monitors/consolemonitor.py Tue Nov 09 14:34:19 2010 +1100

@@ -109,6 +109,8 @@
elapsed CPU time
‘time': ['
'time_delta': ['

elapsed time 'y,
delta time 'y,

"%4d:%02d"'%02d.%03d "
"%h4d:%02d'%02d.

'_time'],
403d ", '_time_delta'],

+ # most recently executed block

+ 'block': ['
s

'''The set of known

block

@@ -322,6 +324,7 Q@
self.stop_now = False
self.end_code = None
self._stats = None

+ self._last_block_name

class _read_stats(object):

'''Read any specified

@@ -517,6 +520,17 @@

print >> self.config_out,

', ' %-16s ', '_last_block'],

column descriptors.

= 'initialisation'

#pylint: disable=C0103,R0903
statistic from the primary population's Statistics object

‘\n'.join(value.list ())

print >> self.config_out

elif sender
if name

“value”

key = value

blocks =

else:

+oF o+t F o+ o+ o+ o+

elif sender
if name =
@@ -563,6 +577,7 @@
'global _evals':
'local_evals': 0,
'groups ': set(),
+ 'blocks': { },
self.primary : {

}
self.stop_now =
-749,3 +764,7 Q@
seconds
minutes
return (hours,

False
Qe

def _last_block(self,

'''Returns

+ o+ o+ o+

self._last_block_name =

self.

if key in blocks:
blocks [key] += 1

0,

'global _max':

'System':
'Block':
contains a block name

key
_stats['blocks ']

blocks [key]l = 1

'Monitor':
'Statistics
contains the

_stats dictionary

EmptyIndividual () }

= minutes * 60
hours * 60
minutes,

seconds, milliseconds)

owner) :
““(last_block_name,) "~ .'"'
return (self._last_block_name,)

diff —r c5a7a90c78ac —r abde71044fa2 esec/esec/monitors/csvmonitor.py
--- a/esec/esec/monitors/csvmonitor.py Mon Jun 28 08:07:01 2010 +1000
+++ b/esec/esec/monitors/csvmonitor.py Tue Nov 09 14:34:19 2010 +1100

12

TR/CIS/2010/6

A ESEC MODIFICATIONS

@@ -98,6 +98,8 @@
elapsed CPU time

'time': ['Elapsed time (ms)', '%d', '_time'],
'time_delta': ['Delta time (ms)', '%d', '_time_delta'],
+ # most recently executed block
+ 'block': ['Block', '%s', '_last_block'],

'''The set of known column descriptors.

diff —r c5a7a90c78ac —r abde71044fa2 esec/esec/system.py

--- a/esec/esec/system.py Mon Jun 28 08:07:01 2010 +1000
+++ b/esec/esec/system.py Tue Nov 09 14:34:19 2010 +1100

@@ -115,14 +115,13 @@
Also expose context

builtin['context'] = self._context
- self._reset_code = compiler.reset
- self._breed_code = compiler.breed
+ self._code_string = compiler.code
+ self.blocks = compiler.blocks
self .monitor = self._context.get('_monitor', MonitorBase())
self._context['_on_yield'] = lambda name, group: self.monitor.on_yield(self,
- self._reset = compile(self._reset_code, 'ESDL Preamble', 'exec')
- self._breed = compile(self._breed_code, 'ESDL Generation', 'exec')
+ self._code = compile(self._code_string, 'ESDL Definition', 'exec')
self._in_step = False
self._continue_step = False

@@ -157,11 +156,8 @@

result.append(self.definition.strip(' \t').strip('\n'))

result.append('"')
if level > 3:
- result.append('>> Compiled Reset Code:')
- result.append(self._reset_code)
- result.append('"')
- result.append('>> Compiled Breed Code:')
- result.append(self._breed_code)
+ result.append('>> Compiled Code:')
+ result.append(self._code_string)
result.append('"')
if level > 2:
result.append('>> ESDL cfg instance:')
@@ -187,7 +183,7 @@
self .monitor.on_pre_reset (self)

Individual.reset_birthday ()
- exec self._reset in self._context
+ exec self._code in self._context

self.monitcr.on_post_reset(self)

@@ -206,7 +202,7 @@
self .monitor.on_run_end(self)
return

- def step(self):
+ def step(self, block="generation"):

'''Executes one generation.

R

Allowed to use exec
@@ -226,7 +222,8 Q@

try:
self .monitor.on_pre_breed(self)

- exec self._breed in self._context
+ self .monitor.notify('System', 'Block',

block)

+ exec ('_block_%s()' % block.upper()) in self._context

except KeyboardInterrupt:
self .monitor.on_run_end(self)

name, group)

13

	Introduction
	Multiblock Extension
	Intent
	BEGIN Statement
	END Statement
	Block Selector
	Rationale

	Examples
	Random Switching
	Iteration Count Switching
	CHC Algorithm
	PSO-EO Hybrid Algorithm

	Alternate Designs
	BEGIN–IF Statement
	SCHEDULE Block

	Summary
	esec Modifications

